3 resultados para Banach Space

em Universidade Complutense de Madrid


Relevância:

70.00% 70.00%

Publicador:

Resumo:

For a topological vector space (X, τ ), we consider the family LCT (X, τ ) of all locally convex topologies defined on X, which give rise to the same continuous linear functionals as the original topology τ . We prove that for an infinite-dimensional reflexive Banach space (X, τ ), the cardinality of LCT (X, τ ) is at least c.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In the context of real-valued functions defined on metric spaces, it is known that the locally Lipschitz functions are uniformly dense in the continuous functions and that the Lipschitz in the small functions - the locally Lipschitz functions where both the local Lipschitz constant and the size of the neighborhood can be chosen independent of the point - are uniformly dense in the uniformly continuous functions. Between these two basic classes of continuous functions lies the class of Cauchy continuous functions, i.e., the functions that map Cauchy sequences in the domain to Cauchy sequences in the target space. Here, we exhibit an intermediate class of Cauchy continuous locally Lipschitz functions that is uniformly dense in the real-valued Cauchy continuous functions. In fact, our result is valid when our target space is an arbitrary Banach space.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Let E and F be Banach spaces. A linear operator from E to F is said to be strictly singular if, for any subspace Q aS, E, the restriction of A to Q is not an isomorphism. A compactness criterion for any strictly singular operator from L (p) to L (q) is found. There exists a strictly singular but not superstrictly singular operator on L (p) , provided that p not equal 2.