20 resultados para Análisis funcional (linguística)
em Universidade Complutense de Madrid
Resumo:
Las herramientas de genotipado en tuberculosis fueron desarrolladas inicialmente para la realización de estudios epidemiológicos. Sin embargo han permitido asimismo desvelar la complejidad clonal existente en las infecciones causadas por Mycobacterium tuberculosis (MTB) y Mycobacterium bovis (M. bovis), poniendo así en cuestión la asunción de que cada episodio de tuberculosis (TB) estuviera causado por una única cepa. De este modo se comenzaron a describir situaciones de coinfección por más de una cepa (infección mixta) o bien de presencia simultánea de variantes clonales (infección policlonal), pudiendo estas, además, ofrecer una distribución heterogénea de las mismas en los diferentes tejidos infectados (infección compartimentalizada). Sin embargo, son pocos los estudios existentes entorno a estos fenómenos, y los que se han realizado atienden a la mera descripción de casos anecdóticos o al estudio de estos eventos en poblaciones en donde la incidencia de TB es alta. Así, el primer objetivo de esta tesis se centró en dimensionar la complejidad clonal existente en las infecciones por MTB en una población no seleccionada, en un entorno de moderada incidencia, donde las expectativas de encontrar la citada complejidad eran escasas. Mediante el análisis por RFLP-IS6110 y MIRU-VNTR se detectaron infecciones complejas en 11 pacientes con TB pulmonar (1,6%) y en 10 pacientes con TB pulmonar y extrapulmonar (14,1%). De estos 21 casos, 9 correspondieron a infecciones mixtas y 12 a infecciones policlonales. Por último, en 9 casos (5 pacientes con infección mixta y 4 con infección policlonal) se documentó la compartimentalización de la infección. Tras la descripción sistemática de los casos de TB con infecciones complejas, nos centramos en el estudio de una de sus modalidades, la infección policlonal. En concreto decidimos abordar la evaluación del posible significado funcional que pudiera conllevar la adquisición de las sutiles reorganizaciones genéticas identificadas entre variantes clonales, que surgen como resultado de eventos de microevolución...
Resumo:
Candida albicans es un importante patógeno oportunista en humanos, que puede causar distintos tipos de infecciones, desde micosis superficiales hasta sistémicas. La candidiasis invasiva es una enfermedad que puede causar mortalidad en pacientes inmunocomprometidos. Para causar daño en el hospedador, C. albicans cuenta con una serie de factores de virulencia. Entre ellos destaca la capacidad de cambiar su forma de crecimiento de levadura a hifa. La superficie celular es la estructura más externa de la célula y el punto de contacto entre el hongo y el hospedador. Las proteínas de superficie tienen un papel importante en la integridad estructural de la célula y en la adherencia e invasión de células del hospedador. Una de las proteínas localizadas en la superficie celular es Ecm33, una proteína de pared celular con anclaje glicosilfosfatidilinositol (GPI). La deleción de esta proteína afecta a la morfología tanto de levaduras como de hifas, dando como resultado células con la pared celular alterada y virulencia reducida tanto en condiciones in vitro como in vivo. El secretoma o las proteínas secretadas por C. albicans son también relevantes en la interacción patógeno-hospedador. C. albicans secreta muchas proteínas importantes relacionadas con diferentes procesos, entre los que se incluyen la formación de biofilms, la adquisición de nutrientes y el mantenimiento de la integridad de la pared celular. Muchas de estas proteínas secretadas, como las pertenecientes a las familias de aspartil proteasas (Sap) y la familia de fosfolipasas B (Plb), también han sido detectadas en la pared celular, ya que deben pasar a través de ella en su tránsito hacia el medio extracelular. Estas proteínas tienen un péptido señal en el extremo N-terminal que es el responsable de dirigirlas a la ruta clásica de secreción. Sin embargo, cerca de un tercio de las proteínas identificadas en el medio extracelular de C. albicans no poseen dicho péptido señal en su secuencia...
Resumo:
We work with Besov spaces Bp,q0,b defined by means of differences, with zero classical smoothness and logarithmic smoothness with exponent b. We characterize Bp,q0,b by means of Fourier-analytical decompositions, wavelets and semi-groups. We also compare those results with the well-known characterizations for classical Besov spaces Bp,qs.
Resumo:
A classical result due to Foias and Pearcy establishes a discrete model for every quasinilpotent operator acting on a separable, infinite-dimensional complex Hilbert space HH . More precisely, given a quasinilpotent operator T on HH , there exists a compact quasinilpotent operator K in HH such that T is similar to a part of K⊕K⊕⋯⊕K⊕⋯K⊕K⊕⋯⊕K⊕⋯ acting on the direct sum of countably many copies of HH . We show that a continuous model for any quasinilpotent operator can be provided. The consequences of such a model will be discussed in the context of C0C0 -semigroups of quasinilpotent operators.
Resumo:
We completely determine the spectra of composition operators induced by linear fractional self-maps of the unit disc acting on weighted Dirichlet spaces; extending earlier results by Higdon [8] and answering the open questions in this context.
Resumo:
We study the algebraic and topological genericity of certain subsets of locally recurrent functions, obtaining (among other results) algebrability and spaceability within these classes.
Resumo:
A Hilbert space operator is called universal (in the sense of Rota) if every operator on the Hilbert space is similar to a multiple of the restriction of the universal operator to one of its invariant subspaces. We exhibit an analytic Toeplitz operator whose adjoint is universal in the sense of Rota and commutes with a quasi-nilpotent injective compact operator with dense range. In articular, this new universal operator invites an approach to the Invariant Subspace Problem that uses properties of operators that commute with the universal operator.
Resumo:
We study the algebraic and topological genericity of certain subsets of locally recurrent functions, obtaining (among other results) algebrability and spaceability within these classes.
Resumo:
Working on the d-torus, we show that Besov spaces Bps(Lp(logL)a) modelled on Zygmund spaces can be described in terms of classical Besov spaces. Several other properties of spaces Bps(Lp(logL)a) are also established. In particular, in the critical case s=d/p, we characterize the embedding of Bpd/p(Lp(logL)a) into the space of continuous functions.
Resumo:
The finite time extinction phenomenon (the solution reaches an equilibrium after a finite time) is peculiar to certain nonlinear problems whose solutions exhibit an asymptotic behavior entirely different from the typical behavior of solutions associated to linear problems. The main goal of this work is twofold. Firstly, we extend some of the results known in the literature to the case in which the ordinary time derivative is considered jointly with a fractional time differentiation. Secondly, we consider the limit case when only the fractional derivative remains. The latter is the most extraordinary case, since we prove that the finite time extinction phenomenon still appears, even with a non-smooth profile near the extinction time. Some concrete examples of quasi-linear partial differential operators are proposed. Our results can also be applied in the framework of suitable nonlinear Volterra integro-differential equations.
Resumo:
The finite time extinction phenomenon (the solution reaches an equilibrium after a finite time) is peculiar to certain nonlinear problems whose solutions exhibit an asymptotic behavior entirely different from the typical behavior of solutions associated to linear problems. The main goal of this work is twofold. Firstly, we extend some of the results known in the literature to the case in which the ordinary time derivative is considered jointly with a fractional time differentiation. Secondly, we consider the limit case when only the fractional derivative remains. The latter is the most extraordinary case, since we prove that the finite time extinction phenomenon still appears, even with a non-smooth profile near the extinction time. Some concrete examples of quasi-linear partial differential operators are proposed. Our results can also be applied in the framework of suitable nonlinear Volterra integro-differential equations.
Resumo:
A counterpart of the Mackey–Arens Theorem for the class of locally quasi-convex topological Abelian groups (LQC-groups) was initiated in Chasco et al. (Stud Math 132(3):257–284, 1999). Several authors have been interested in the problems posed there and have done clarifying contributions, although the main question of that source remains open. Some differences between the Mackey Theory for locally convex spaces and for locally quasi-convex groups, stem from the following fact: The supremum of all compatible locally quasi-convex topologies for a topological abelian group G may not coincide with the topology of uniform convergence on the weak quasi-convex compact subsets of the dual groupG∧. Thus, a substantial part of the classical Mackey–Arens Theorem cannot be generalized to LQC-groups. Furthermore, the mentioned fact gives rise to a grading in the property of “being a Mackey group”, as defined and thoroughly studied in Díaz Nieto and Martín-Peinador (Proceedings in Mathematics and Statistics 80:119–144, 2014). At present it is not known—and this is the main open question—if the supremum of all the compatible locally quasi-convex topologies on a topological group is in fact a compatible topology. In the present paper we do a sort of historical review on the Mackey Theory, and we compare it in the two settings of locally convex spaces and of locally quasi-convex groups. We point out some general questions which are still open, under the name of Problems.
Resumo:
We extend previous papers in the literature concerning the homogenization of Robin type boundary conditions for quasilinear equations, in the case of microscopic obstacles of critical size: here we consider nonlinear boundary conditions involving some maximal monotone graphs which may correspond to discontinuous or non-Lipschitz functions arising in some catalysis problems.
Resumo:
Let U be a domain in CN that is not a Runge domain. We study the topological and algebraic properties of the family of holomorphic functions on U which cannot be approximated by polynomials.
Resumo:
In this work, we study a version of the general question of how well a Haar-distributed orthogonal matrix can be approximated by a random Gaussian matrix. Here, we consider a Gaussian random matrix (Formula presented.) of order n and apply to it the Gram–Schmidt orthonormalization procedure by columns to obtain a Haar-distributed orthogonal matrix (Formula presented.). If (Formula presented.) denotes the vector formed by the first m-coordinates of the ith row of (Formula presented.) and (Formula presented.), our main result shows that the Euclidean norm of (Formula presented.) converges exponentially fast to (Formula presented.), up to negligible terms. To show the extent of this result, we use it to study the convergence of the supremum norm (Formula presented.) and we find a coupling that improves by a factor (Formula presented.) the recently proved best known upper bound on (Formula presented.). Our main result also has applications in Quantum Information Theory.