7 resultados para Algebra of differential operators
em Universidade Complutense de Madrid
Resumo:
We completely determine the spectra of composition operators induced by linear fractional self-maps of the unit disc acting on weighted Dirichlet spaces; extending earlier results by Higdon [8] and answering the open questions in this context.
Resumo:
Aims. We present a detailed study of the two Sun-like stars KIC 7985370 and KIC 7765135, to determine their activity level, spot distribution, and differential rotation. Both stars were previously discovered by us to be young stars and were observed by the NASA Kepler mission. Methods. The fundamental stellar parameters (vsini, spectral type, T_eff, log g, and [Fe/H]) were derived from optical spectroscopy by comparison with both standard-star and synthetic spectra. The spectra of the targets allowed us to study the chromospheric activity based on the emission in the core of hydrogen Hα and Ca ii infrared triplet (IRT) lines, which was revealed by the subtraction of inactive templates. The high-precision Kepler photometric data spanning over 229 days were then fitted with a robust spot model. Model selection and parameter estimation were performed in a Bayesian manner, using a Markov chain Monte Carlo method. Results. We find that both stars are Sun-like (of G1.5 V spectral type) and have an age of about 100–200 Myr, based on their lithium content and kinematics. Their youth is confirmed by their high level of chromospheric activity, which is comparable to that displayed by the early G-type stars in the Pleiades cluster. The Balmer decrement and flux ratio of their Ca ii-IRT lines suggest that the formation of the core of these lines occurs mainly in optically thick regions that are analogous to solar plages. The spot model applied to the Kepler photometry requires at least seven persistent spots in the case of KIC 7985370 and nine spots in the case of KIC 7765135 to provide a satisfactory fit to the data. The assumption of the longevity of the star spots, whose area is allowed to evolve with time, is at the heart of our spot-modelling approach. On both stars, the surface differential rotation is Sun-like, with the high-latitude spots rotating slower than the low-latitude ones. We found, for both stars, a rather high value of the equator-to-pole differential rotation (dΩ ≈ 0.18 rad d^-1), which disagrees with the predictions of some mean-field models of differential rotation for rapidly rotating stars. Our results agree instead with previous works on solar-type stars and other models that predict a higher latitudinal shear, increasing with equatorial angular velocity, that can vary during the magnetic cycle.
Resumo:
A classical result due to Foias and Pearcy establishes a discrete model for every quasinilpotent operator acting on a separable, infinite-dimensional complex Hilbert space HH . More precisely, given a quasinilpotent operator T on HH , there exists a compact quasinilpotent operator K in HH such that T is similar to a part of K⊕K⊕⋯⊕K⊕⋯K⊕K⊕⋯⊕K⊕⋯ acting on the direct sum of countably many copies of HH . We show that a continuous model for any quasinilpotent operator can be provided. The consequences of such a model will be discussed in the context of C0C0 -semigroups of quasinilpotent operators.
Resumo:
The finite time extinction phenomenon (the solution reaches an equilibrium after a finite time) is peculiar to certain nonlinear problems whose solutions exhibit an asymptotic behavior entirely different from the typical behavior of solutions associated to linear problems. The main goal of this work is twofold. Firstly, we extend some of the results known in the literature to the case in which the ordinary time derivative is considered jointly with a fractional time differentiation. Secondly, we consider the limit case when only the fractional derivative remains. The latter is the most extraordinary case, since we prove that the finite time extinction phenomenon still appears, even with a non-smooth profile near the extinction time. Some concrete examples of quasi-linear partial differential operators are proposed. Our results can also be applied in the framework of suitable nonlinear Volterra integro-differential equations.
Resumo:
The finite time extinction phenomenon (the solution reaches an equilibrium after a finite time) is peculiar to certain nonlinear problems whose solutions exhibit an asymptotic behavior entirely different from the typical behavior of solutions associated to linear problems. The main goal of this work is twofold. Firstly, we extend some of the results known in the literature to the case in which the ordinary time derivative is considered jointly with a fractional time differentiation. Secondly, we consider the limit case when only the fractional derivative remains. The latter is the most extraordinary case, since we prove that the finite time extinction phenomenon still appears, even with a non-smooth profile near the extinction time. Some concrete examples of quasi-linear partial differential operators are proposed. Our results can also be applied in the framework of suitable nonlinear Volterra integro-differential equations.
Resumo:
In this chapter we review several properties of Atanassov’s intuitionistic fuzzy relations, recalling the main concepts related to Atanassov’s intuitionistic fuzzy relations and the main properties that can be demanded to such conepts. We also consider the use of Atanassov’s operators over such relations.
Resumo:
Understanding the complexity of live pig trade organization is a key factor to predict and control major infectious diseases, such as classical swine fever (CSF) or African swine fever (ASF). Whereas the organization of pig trade has been described in several European countries with indoor commercial production systems, little information is available on this organization in other systems, such as outdoor or small-scale systems. The objective of this study was to describe and compare the spatial and functional organization of live pig trade in different European countries and different production systems. Data on premise characteristics and pig movements between premises were collected during 2011 from Bulgaria, France, Italy, and Spain, which swine industry is representative of most of the production systems in Europe (i.e., commercial vs. small-scale and outdoor vs. indoor). Trade communities were identified in each country using the Walktrap algorithm. Several descriptive and network metrics were generated at country and community levels. Pig trade organization showed heterogeneous spatial and functional organization. Trade communities mostly composed of indoor commercial premises were identified in western France, northern Italy, northern Spain, and north-western Bulgaria. They covered large distances, overlapped in space, demonstrated both scale-free and small-world properties, with a role of trade operators and multipliers as key premises. Trade communities involving outdoor commercial premises were identified in western Spain, south-western and central France. They were more spatially clustered, demonstrated scale-free properties, with multipliers as key premises. Small-scale communities involved the majority of premises in Bulgaria and in central and Southern Italy. They were spatially clustered and had scale-free properties, with key premises usually being commercial production premises. These results indicate that a disease might spread very differently according to the production system and that key premises could be targeted to more cost-effectively control diseases. This study provides useful epidemiological information and parameters that could be used to design risk-based surveillance strategies or to more accurately model the risk of introduction or spread of devastating swine diseases, such as ASF, CSF, or foot-and-mouth disease.