48 resultados para war films

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In order to further investigate nanoindentation data of film-substrate systems and to learn more about the mechanical properties of nanometer film-substrate systems, two kinds of films on different substrate systems have been tested with a systematic variation in film thickness and substrate characteristics. The two kinds of films are aluminum and tungsten, which have been sputtered on to glass and silicon substrates, respectively. Indentation experiments were performed with a Nano Indent XP II with indenter displacements typically about two times the nominal film thicknesses. The resulting data are analyzed in terms of load-displacement curves and various comparative parameters, such as hardness, Young's modulus, unloading stiffness and elastic recovery. Hardness and Young's modulus are investigated when the substrate effects are considered. The results show how the composite hardness and Young's modulus are different for different substrates, different films and different film thicknesses. An assumption of constant Young's modulus is used for the film-substrate system, in which the film and substrate have similar Young's moduli. Composite hardness obtained by the Joslin and Oliver method is compared with the directly measured hardness obtained by the Oliver and Pharr method.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The growth of highly lattice-mismatched InAs0.3Sb0.7 films on (100) GaAs Substrates by magnetron Sputtering has been investigated and even epitaxial lnAs(0.3)Sb(0.7) films have been successfully obtained. A strong effect of the growth conditions on the film structure was observed, revealing that there was a growth mechanism transition from three-dimensional nucleation growth to epitaxial layer-by-layer growth mode when increasing the substrate temperature. A qualitative explanation for that transition was proposed and the critical conditions for the epitaxial layer-by-layer growth mode were also discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

首次在涂敷PEI的玻璃表面上制备了癸酸及全氟癸酸的单分子层膜。研究了成膜机理及摩擦特性。结果表明。脱水剂DCCD促进了癸酸或全氟癸酸与PEI酞胺化的反应。导致两种羧酸在PEI表面产生了靠化学键(酞胺键)连接的稳定的单分子层膜,摩擦、磨损实验表明。单分子层有机膜的摩擦特性受膜的组成、表面能及有序性和堆积密度的重要影响。表面能越低,有序性和堆积密度越高。摩擦系数越低。与碳氢化合物相比。碳氟化合物形成的有序膜具有更高的强度和抗磨性能。

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Essential work of fracture (EWF) analysis is used to study the effect of the silica doping level on fracture toughness of polyimide/silica (PI/SiO2) hybrid films. By using double-edge-notched-tension (DENT) specimens with different ligament lengths, it seems that the introduction of silica additive can improve the specific essential work of fracture (w (e) ) of PI thin films, but the specific non-essential work of fracture (beta w (p) ) will decease significantly as the silica doping level increasing from 1 to 5 wt.%, and even lower than that of neat PI. The failure process of the fracture is investigated with online scanning electron microscope (SEM) observation and the parameters of non-essential work of fracture, beta and w (p) , are calculated based on finite element (FE) method.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new DC plasma torch in which are jet states and deposition parameters can be regulated over a wide range has been built. It showed advantages in producing stable plasma conditions at a small gas flow rate. Plasma jets with and without magnetically rotated arcs could be generated. With straight are jet deposition, diamond films could be formed at a rate of 39 mu m/h on Mo substrates of Phi 25 mm, and the conversion rate of carbon in CH4 to diamond was less than 3%. Under magnetically rotated conditions, diamond films could be deposited uniformly in a range of Phi 40 mm at 30 mu m/h, with a quite low total gas flow rate and high carbon conversion rate of over 11%. Mechanisms of rapid and uniform deposition of diamond films with low gas consumption and high carbon transition efficiency are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The morphological stability of epitaxial thin elastic films on a substrate by van der Waals force is discussed. It is found that only van der Waals force with negative Hamaker constant (A < 0) tends to stabilize the film, and the lower bound for the Hamaker constant is also obtained for the stability of thin film. The critical value of the undulation wavelength is found to be a function of both film thickness and external stress. The charateristic time-scale for surface mass diffusion scales to the fourth power to the wavelength of the perturbation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Three analytical double-parameter criteria based on a bending model and a two-dimensional finite element analysis model are presented for the modeling of ductile thin film undergoing a nonlinear peeling process. The bending model is based on different governing parameters: (1) the interfacial fracture toughness and the separation strength, (2) the interfacial fracture toughness and the crack tip slope angle, and (3) the interfacial fracture toughness and the critical Mises effective strain of the delaminated thin film at the crack tip. Thin film nonlinear peeling under steady-state condition is solved with the different governing parameters. In addition, the peeling test problem is simulated by using the elastic-plastic finite element analysis model. A critical assessment of the three analytical bending models is made by comparison of the bending model solutions with the finite element analysis model solutions. Furthermore, through analyses and comparisons for solutions based on both the bending model and the finite element analysis model, some connections between the bending model and the finite element analysis model are developed. Moreover, in the present research, the effect of different selections for cohesive zone shape on the ductile film peeling solutions is discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigate the morphological stability of epitaxial thin elastic films on a substrate by the Casimir force between the film surface and a flat plate. Critical undulation wavelengths are derived for two different limit conditions. Consideration of the Casimir force in both limit cases decreases the critical wavelength of the surface perturbation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, the mechanical properties of PI/Si_O, nanocomposite hybrid films with different silica doping levels are experimentally studied at low temperature. Experimental results show that the coefficient of thermal expansion (CTE) of the PI/Si_O, nanocomposite hybrid films gradually reduces when the ambiance temperature is decreased. At the liquid nitrogen temperature (77 K), the CTE value is about five times less than that at room temperature (287 K). The measured CTEs of hybrid films greatly decrease when doped with inorganic silica, especially when the silica doping level is more than 1 wt.%. However, too high silica contents (more than 10 wt.%) can cause problem to disperse effectively and the specimens become quite opaque. Experimental results also show that the effects of the pre-applied stress levels can be neglected on the CTE testing. When the ambient temperature changes from 287 to 77 K, the measured average values of the films' ultimate tensile strength (UTS) and Young's modulus increase about 60 and 90%, respectively, while the breaking elongation decreases about 42%.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electrowetting (EW) is an effective way to manipulate small volume liquid in micro- and nano-devices, for it can improve its wettability. Since the late 1990s, electrowetting-on-dielectric (EWOD) has been used widely in bio-MEMS, lab-on-a-chip, etc. Polydimethlsiloxane (PDMS) is extensively utilized as base materials in the fabrication of biomedical micro- and nano-devices. The properties of thin PDMS films used as dielectric layer in EW are studied in this paper. The experimental results show that the thin PDMS films exhibit good properties in EWOD. As to PDMS films with different thicknesses, a threshold voltage and a hysteresis were observed in the EIWOD experiments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

ZnO piezoelectric thin films were prepared on crystal substrate Si(111) by sol-gel technology, then characterized by scanning electron microscopy, X-ray diffraction and atomic force microscopy (AFM). The ZnO films characterized by X-ray diffraction are highly oriented in (002) direction with the growing of the film thickness. The morphologies, roughness and grain size of ZnO film investigated by AFM show that roughness and grain size of ZnO piezoelectric films decrease with the increase of the film thickness. The roughness dimension is 2.188-0.914 nm. The piezoelectric coefficient d(33) was investigated with a piezo-response force microscope (PFM). The results show that the piezoelectric coefficient increases with the increase of thickness and (002) orientation. When the force reference is close to surface roughness of the films, the piezoelectric coefficient measured is inaccurate and fluctuates in a large range, but when the force reference is big, the piezoelectric coefficient d(33) changes little and ultimately keeps constant at a low frequency.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The evaluation of mechanical properties of carbon nanotube (CNT) fibers is inherently difficult. Here, Raman scattering-a generic methodology independent of mechanical measurements-is used to determine the interbundle strength and microscopic failure process for various CNT macroarchitectures. Raman data are used to predict the moduli of CNT films and fibers, and to illustrate the influences of the twisting geometries on the fibers' mechanical performances.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The InAsxSb1-x films were grown on (100) GaSb substrates by liquid-phase epitaxy, and their structural, electrical, and optical properties were investigated. The high-resolution x-ray diffraction results reveal that the single crystalline InAsxSb1-x films with a midrange composition are epitaxially grown on the GaSb substrates. Temperature dependence of the Hall mobility was theoretically modeled by considering several predominant scattering mechanisms. The results indicate that ionized impurity and dislocation scatterings dominate at low temperatures, while polar optical phonon scattering is important at room temperature (RT). Furthermore, the InAsxSb1-x films with the higher As composition exhibit the better crystalline quality and the higher mobility. The InAs0.35Sb0.65 film exhibits a Hall mobility of 4.62x10(4) cm(2) V-1 s(-1). The cutoff wavelength of photoresponse is extended to about 12 mu m with a maximum responsivity of 0.21 V/W at RT, showing great potential for RT long-wavelength infrared detection. (C) 2008 American Institute of Physics. [DOI: 10.1063/1.2989116]

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thickness and component distributions of large-area thin films are an issue of international concern in the field of material processing. The present work employs experiments and direct simulation Monte Carlo (DSMC) method to investigate three-dimensional low-density, non-equilibrium jets of yttrium and titanium vapor atoms in an electron-beams physical vapor deposition (EBPVD) system furnished with two or three electron-beams, and obtains their deposition thickness and component distributions onto 4-inch and 6-inch mono-crystal silicon wafers. The DSMC results are found in excellent agreement with our measurements, such as evaporation rates of yttrium and titanium measured in-situ by quartz crystal resonators, deposited film thickness distribution measured by Rutherford backscattering spectrometer (RBS) and surface profilometer and deposited film molar ratio distribution measured by RBS and inductively coupled plasma atomic emission spectrometer (ICP-AES). This can be taken as an indication that a combination of DSMC method with elaborate measurements may be satisfactory for predicting and designing accurately the transport process of EBPVD at the atomic level.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two types of peeling experiments are performed in the present research. One is for the Al film/Al2O3 substrate system with an adhesive layer between the film and the substrate. The other one is for the Cu film/Al2O3 substrate system without adhesive layer between the film and the substrate, and the Cu films are electroplated onto the Al2O3 substrates. For the case with adhesive layer, two kinds of adhesives are selected, which are all the mixtures of epoxy and polyimide with mass ratios 1:1.5 and 1:1, respectively. The relationships between energy release rate, the film thickness and the adhesive layer thickness are measured during the steady-state peeling process. The effects of the adhesive layer on the energy release rate are analyzed. Using the experimental results, several analytical criteria for the steady-state peeling based on the bending model and on the two-dimensional finite element analysis model are critically assessed. Through assessment of analytical models, we find that the cohesive zone criterion based on the beam bend model is suitable for a weak interface strength case and it describes a macroscale fracture process zone case, while the two-dimensional finite element model is effective to both the strong interface and weak interface, and it describes a small-scale fracture process zone case. (C) 2007 Elsevier Ltd. All rights reserved.