293 resultados para vectorial analytic solution
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
We propose a method to treat the interfacial misfit dislocation array following the original Peierls-Nabarro's ideas. A simple and exact analytic solution is derived in the extended Peierls-Nabarro's model, and this solution reflects the core structure and the energy of misfit dislocation, which depend on misfit and bond strength. We also find that only with beta < 0.2 the structure of interface can be represented by an array of singular Volterra dislocations, which conforms to those of atomic simulation. Interfacial energy and adhesive work can be estimated by inputting ab initio calculation data into the model, and this shows the method can provide a correlation between the ab initio calculations and elastic continuum theory.
Resumo:
对描述双掺杂晶体非挥发性全息记录动力学过程的Kukhtarev方程进行了矢量分析, 分析中考虑了体光生伏特效应和外加电场的作用。在小信号近似的基础上给出了双中心全息记录中记录与固定阶段空间电荷场的矢量解析解。在综合考虑空间电荷场的各向异性以及晶体有效电光系数的各向异性后, 给出了双中心全息记录的优化记录方向。结果表明, 对(Fe, Mn):LiNbO3晶体633 nm寻常光记录, 优化记录方向主要由有效电光系数决定, 光栅波矢与光轴夹角为22°, 方位角为30°;对(Fe, Mn):LiNbO3晶体633
Resumo:
Vectorial Kukhtarev equations modified for the nonvolatile holographic recording in doubly doped crystals are analyzed, in which the bulk photovoltaic effect and the external electrical field are both considered. On the basis of small modulation approximation, both the analytic solution to the space-charge field with time in the recording phase and in the readout phase are deduced. The analytic solutions can be easily simplified to adapt the one-center model, and they have the same analytic expressions given those when the grating vector is along the optical axis. Based on the vectorial analyses of the band transport model an optimal recording direction is given to maximize the refractive index change in doubly doped LiNbO3:Fe: Mn crystals. (c) 2007 Optical Society of America.
Resumo:
The T. E. wave in cylindrical wavegulde filled with inhomogeneous plasma immersed in the external uniform longitudinal magnetic field is investigated. The analytic solution expressed in polynomial formed by cutting the confluent hypergeometric function is obtained. Furthermore the eigenfrequency of T. E. wave is obtained.
Resumo:
The coherent anti-Stokes Raman scattering (CARS) microscope with the combination of confocal and CARS techniques is a remarkable alternative for imaging chemical or biological specimens that neither fluoresce nor tolerate labelling. CARS is a nonlinear optical process, the imaging properties of CARS microscopy will be very different from the conventional confocal microscope. In this paper, the intensity distribution and the polarization property of the optical field near the focus was calculated. By using the Green function, the precise analytic solution to the wave equation of a Hertzian dipole source was obtained. We found that the intensity distributions vary considerably with the different experimental configurations and the different specimen shapes. So the conventional description of microscope (e.g. the point spread function) will fail to describe the imaging properties of the CARS microscope.
Resumo:
In this paper the photorefractive sensitivity defined for single-centre holographic recording is modified to adapt two-centre holographic recording. Based on the time analytic solution of Kukhtarev equations for doubly doped crystals, the analytical expression of photorefractive sensitivity is given. For comparison with single-centre holographic recording and summing the electron competition effects between the deeper and shallower traps, an effective electron transport length is proposed, which varies with the intensity ratios of recording light to sensitive light. According to analyses in this paper, the lower photorefractive sensitivity in two-centre holographic recording is mainly due to the lower concentration of unionized dopants in the shallower centre and the lower effective electron transport length.
Resumo:
Formation of bumps in chalcogenide phase change thin films during the laser writing process is theoretically and experimentally investigated. The process involves basically fast heating and quenching stages. Circular bumps are formed after cooling, and the shape and size of the bumps depend on various parameters such as temperatures, laser power, beam size, laser pulse duration, etc. In extreme cases, holes are formed at the apex of the bumps. To understand the bumps and their formation is of great interest for data storage. In the present work, a theoretical model is established for the formation process, and the geometric characters of the formed bumps can be analytically and quantitatively evaluated from various parameters involved in the formation. Simulations based on the analytic solution are carried out taking Ag8In14Sb55Te23 as an example. The results are verified with experimental observations of the bumps. (C) 2008 American Institute of Physics.
Resumo:
An improved axisymmetric mathematic modeling is proposed for the process of hydrate dissociation by depressurization around vertical well. To reckon in the effect of latent heat of gas hydrate at the decomposition front, the energy balance equation is employed. The semi-analytic solutions for temperature and pressure fields are obtained by using Boltzmann-transformation. The location of decomposition front is determined by solving initial value problem for system of ordinary differential equations. The distributions of pressure and temperature along horizontal radiate in the reservoir are calculated. The numeric results indicate that the moving speed of decomposition front is sensitively dependent on the well pressure and the sediment permeability. Copyright (C) 2010 John Wiley & Sons, Ltd.
Resumo:
A hydrodynamic-thermodynamic equation set was set up to reflect the formational mechanism and evolution of the Northern Yellow (Huanghai) Sea cold water mass (NYSCWM) and its density circulation. Appropriate mathematical physical models were established by using some physical postulations. An approximate analytic solution to expound the distributions of temperature and three-dimensional current velocity, which can be used to expound the formational mechanism of the NYSCWM and its density circulation is obtained by using the theory of boundary layer and perturbational analyses.
Resumo:
数值模式是潮波研究的一种有利手段,但在研究中会面临各种具体问题,包括开边界条件的确定、底摩擦系数和耗散系数的选取等。数据同化是解决这些问题的一种途径,即利用有限数量的潮汐观测资料对潮波进行最优估计,其根本目的是迫使模型预报值逼近观测值,使模式不要偏离实际情况太远。本文采用了一种优化开边界方法,沿着数值模型的开边界优化潮汐水位信息,目的是设法使数值解在动力约束的意义下接近观测值,获得研究区域的潮汐结果。边界值由指定优化问题的解来定,以提高模拟区域的潮汐精度,最优问题的解是基于通过开边界的能量通量的变化,处理开边界处的观测值与计算值之差的最小化。这里提供了辐射型边界条件,由Reid 和Bodine(本文简称为RB)推导,我们将采用的优化后的RB方法(称为ORB)是优化开边界的特殊情况。 本文对理想矩形海域( E- E, N- N, 分辨率 )进行了潮波模拟,有东部开边界,模式采用ECOM3D模式。对数据结果的误差分析采用,振幅平均偏差,平均绝对偏差,平均相对误差和均方根偏差四个值来衡量模拟结果的好坏程度。 需要优化入开边界的解析潮汐值本文采用的解析解由方国洪《海湾的潮汐与潮流》(1966年)方法提供,为验证本文所做的解析解和方文的一致,本文做了其第一个例子的关键值a,b,z,结果与其结果吻合的相当好。但略有差别,分析的可能原因是两法在具体迭代方案和计算机保留小数上有区别造成微小误差。另外,我们取m=20,得到更精确的数值,我们发现对前十项的各项参数值,取m=10,m=20各项参数略有改进。当然我们可以获得m更大的各项参数值。 同时为了检验解析解的正确性讨论m和l变化对边界值的影响,结果指出,增大m,m=20时,u的模最大在本身u1或u2的模的6%;m=100时,u的模最大在本身u1或u2的模的4%;m再增大,m=1000时,u的模最大在本身u1或u2的模的4%,改变不大。当l<1时, =0处u的模最大为2。当l=1时, =0处u的模最大为0.1,当l>1时,l越大,u的模越小,当l=10时,u的模最大为0.001,可以认为为0。 为检验该优化方法的应用情况,我们对理想矩形区域进行模拟,首先将本文所采用的优化开边界方法应用于30m的情况,在开边界优化入开边界得出模式解,所得模拟结果与解析解吻合得相当好,该模式解和解析解在整个区域上,振幅平均绝对偏差为9.9cm,相位平均绝对偏差只有4.0 ,均方根偏差只有13.3cm,说明该优化方法在潮波模型中有效。 为验证该优化方法在各种条件下的模拟结果情况,在下面我们做了三类敏感性试验: 第一类试验:为证明在开边界上使用优化方法相比于没有采用优化方法的模拟解更接近于解析解,我们来比较ORB条件与RB条件的优劣,我们模拟用了两个不同的摩擦系数,k分别为:0,0.00006。 结果显示,针对不同摩擦系数,显示在开边界上使用ORB条件的解比使用RB条件的解无论是振幅还是相位都有显著改善,两个试验均方根偏差优化程度分别为84.3%,83.7%。说明在开边界上使用优化方法相比于没有采用优化方法的模拟解更接近于解析解,大大提高了模拟水平。上述的两个试验得出, k=0.00006优化结果比k=0的好。 第二类试验,使用ORB条件确定优化开边界情况下,在东西边界加入出入流的情况,流考虑线性和非线性情况,结果显示,加入流的情况,潮汐模拟的效果降低不少,流为1Sv的情况要比5Sv的情况均方根偏差相差20cm,而不加流的情况只有0.2cm。线性流和非线性流情况两者模式解相差不大,振幅,相位各项指数都相近, 说明流的线性与否对结果影响不大。 第三类试验,不仅在开边界使用ORB条件,在模式内部也使用ORB条件,比较了内部优化和不优化情况与解析解的偏差。结果显示,选用不同的k,振幅都能得到很好的模拟,而相位相对较差。另外,在内部优化的情况下,考虑不同的k的模式解, 我们选用了与解析解相近的6个模式解的k,结果显示,不同的k,振幅都能得到很好的模拟,而相位较差。 总之,在开边界使用ORB条件比使用RB条件好,振幅相位都有大幅度改进,在加入出入流情况下,流的大小对模拟结果有影响,但线形流和非线性流差别不大。内部优化的结果显示,模式采用不同的k都能很好模拟解析解的振幅。
Resumo:
Recurring to the characteristic of Bessel function, we give the analytic expression or the Fresnel diffraction by a circular aperture, thus the diffractions on the propagation axis and along the boundary of the geometrical shadow are discussed conveniently. Since it is difficult to embody intuitively the physical meaning from this series expression of the Fresnel diffraction, after weighing the diffractions on the axis and along the boundary of the geometrical shadow, we propose a simple approximate expression of the circular diffraction, which is equivalent to the rigorous solution in the further propagation distance. It is important for the measurement of the parameter or the beam, such as the quantitative analysis of the relationship of the wave error and the divergence of the beam, In this paper, the relationship of the fluctuation of the transverse diffraction profile and the position of the axial point is discussed too. (c) 2005 Elsevier GrnbH. All rights reserved.
Resumo:
A three-phase piezoelectric cylinder model is proposed and an exact solution is obtained for the model under a farfield antiplane mechanical load and a far-field inplane electrical load. The three-phase model can serve as a fiber/interphase layer/matrix model, in terms of which a lot of interesting mechanical and electrical coupling phenomena induced by the interphase layer are revealed. It is found that much more serious stress and electrical field concentrations occur in the model with the interphase layer than those without any interphase layer. The three-phase model can also serve as a fiber/matrix/composite model, in terms of which a generalized self-consistent approach is developed for predicting the effective electroelastic moduli of piezoelectric composites. Numerical examples are given and discussed in detail.
Resumo:
A new finite difference method for the discretization of the incompressible Navier-Stokes equations is presented. The scheme is constructed on a staggered-mesh grid system. The convection terms are discretized with a fifth-order-accurate upwind compact difference approximation, the viscous terms are discretized with a sixth-order symmetrical compact difference approximation, the continuity equation and the pressure gradient in the momentum equations are discretized with a fourth-order difference approximation on a cell-centered mesh. Time advancement uses a three-stage Runge-Kutta method. The Poisson equation for computing the pressure is solved with preconditioning. Accuracy analysis shows that the new method has high resolving efficiency. Validation of the method by computation of Taylor's vortex array is presented.
Resumo:
An analytical solution for the three-dimensional scattering and diffraction of plane P-waves by a hemispherical alluvial valley with saturated soil deposits is developed by employing Fourier-Bessel series expansion technique. Unlike previous studies, in which the saturated soil deposits were simulated with the single-phase elastic theory, in this paper, they are simulated with Biot's dynamic theory for saturated porous media, and the half space is assumed as a single-phase elastic medium. The effects of the dimensionless frequency, the incidence angle of P-wave and the porosity of soil deposits on the surface displacement magnifications of the hemispherical alluvial valley are investigated. Numerical results show that the existence of a saturated hemispherical alluvial valley has much influence on the surface displacement magnifications. It is more reasonable to simulate soil deposits with Biot's dynamic theory when evaluating the displacement responses of a hemispherical alluvial valley with an incidence of P-waves.
Resumo:
A quasi-steady state growth and dissolution in a 2-D rectangular enclosure is numerically investigated. This paper is an extension to indicate the effects of the orientation of gravity on the concentration field in crystallization from solution under microgravity, especially on the lateral non-uniformity of concentration distribution at the growth surface. The thermal and solute convection are included in this model.