8 resultados para vector addition systems
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
The concept of state vector stems from statistical physics, where it is usually used to describe activity patterns of a physical field in its manner of coarsegrain. In this paper, we propose an approach by which the state vector was applied to describe quantitatively the damage evolution of the brittle heterogeneous systems, and some interesting results are presented, i.e., prior to the macro-fracture of rock specimens and occurrence of a strong earthquake, evolutions of the four relevant scalars time series derived from the state vectors changed anomalously. As retrospective studies, some prominent large earthquakes occurred in the Chinese Mainland (e.g., the M 7.4 Haicheng earthquake on February 4, 1975, and the M 7.8 Tangshan earthquake on July 28, 1976, etc) were investigated. Results show considerable promise that the time-dependent state vectors could serve as a kind of precursor to predict earthquakes.
Resumo:
UV radiation is one of many harmful factors found in space that are detrimental to organisms on earth in space exploration. In the present work, we examined the role of antioxidant system in Nostoc sphaeroides Kutz (Cyanobacterium) and the effects of exogenously applied antioxidant molecules on its photosynthetic rate under UV-B radiation. It was found that UV-B radiation promoted the activity of antioxidant system to protect photosystem 11 (PSII) and exogenously applied antioxidant: sodium nitroprusside (SNP) and N-acetylcysteine (NAC) had an obvious protection on PSII activity under UV-B radiation. The activity of superoxide dismutase (SOD, EC 1.15.1.1), catalase (CAT, EC 1.11.1.6), peroxidase (POD, EC 1.11.1.7) and content of NIDA (malondialdehyde) and ASC (ascorbate) were improved by 0.5 mM and 1 mM SNP, but 0.1 mM SNP decreased the activity of antioxidant system. Addition of exogenous NAC decreased the activity of SOD, POD, CAT and the content MDA and ASC. In contrast, exogenously applied NAC increased GSH content. The results suggest that exogenous SNP and NAC may protect algae by different mechanisms: SNP may play double roles as both sources of reactive free radicals as well as ROS scavengers in mediating the protective role of PSII on algae under UV-B radiation. On the other hand, NAC functions as an antioxidant or precursor of glutathione, which could protect PSII directly from UV-B radiation. (c) 2007 COSPAR, Published by Elsevier Ltd. All rights reserved.
Resumo:
This paper proposes novel fast addition and multiplication circuits that are based on non-binary redundant number systems and single electron (SE) devices. The circuits consist of MOSFET-based single-electron (SE) turnstiles. We use the number of electrons to represent discrete multiple-valued logic states and we finish arithmetic operations by controlling the number of electrons transferred. We construct a compact PD2,3 adder and a 12x12bit multiplier using the PD2,3 adder. The speed of the adder can be as high as 600MHz with 400nW power dissipation. The speed of the adder is regardless of its operand length. The proposed circuits have much smaller transistors than conventional circuits.
Resumo:
A smart biodegradable cationic polymer (CBA-PEI) based on the disulfide bond-containing cross-linker cystamine bisacrylamide (CBA) and low molecular weight branched polyethylenimine (1800-Da, PEI1800) was successfully synthesized by Michael addition reaction in our recent study. Furthermore, a series of copolymers (CBA-PEI-PEG) with different PEGylation degree were obtained by the mPEG-SPA (5000-Da) reacting with CBA-PEI at various weight ratios directly. The molecular structures of the resulting polymers CBA-PEI and CBA-PEI-PEG were evaluated by nuclear magnetic resonance spectroscopy (H-1-NMR) and capillary viscosity measurements, all of which had successfully verified formation of the copolymers. The polymer/DNA complexes based on CBA-PEI and CBA-PEI-PEG were measured by dynamic light scattering and gel retardation assay. The results showed that the particle size and zeta potential of complexes were reduced with increasing amount of PEG grafting, even no particle formation. The particle size of CBA-PEI/DNA complexes was in range of 103.1 to 129.1 nm, and the zeta potential was in range of 14.2 to 24.3 mV above the 2:1 weight ratio. In the same measure condition, the particle size of CBA-PEI-PEG complexes was reduced to a range of 32.2 to 55 nm, and the zeta potential was in range of 9.3 to 13.8 mV at the 2:1 weight ratio.
Resumo:
The effect of oxygen content on superconductivity of the 2212 and 2223 phase has been studied. By comparing the excess oxygen, the modulation vector, the XRD patterns, and the electric resistivity of 2212 and 2223 phase samples obtained with different post-annealing conditions, i.e., annealing at 600-degrees-C or quenching from 860-degrees-C, it was found that the superconductivity is markedly influenced by both the defect distribution in non-Bi layers and the interstitial oxygens incorporated in the Bi-O layers. A tentative explanation for this is given.
Resumo:
In this letter, a new wind-vector algorithm is presented that uses radar backscatter sigma(0) measurements at two adjacent subscenes of RADARSAT-1 synthetic aperture radar (SAR) images, with each subscene having slightly different geometry. Resultant wind vectors are validated using in situ buoy measurements and compared with wind vectors determined from a hybrid wind-retrieval model using wind directions determined by spectral analysis of wind-induced image streaks and observed by colocated QuikSCAT measurements. The hybrid wind-retrieval model consists of CMOD-IFR2 [applicable to C-band vertical-vertical (W) polarization] and a C-band copolarization ratio according to Kirchhoff scattering. The new algorithm displays improved skill in wind-vector estimation for RADARSAT-1 SAR data when compared to conventional wind-retrieval methodology. In addition, unlike conventional methods, the present method is applicable to RADARSAT-1 images both with and without visible streaks. However, this method requires ancillary data such as buoy measurements to resolve the ambiguity in retrieved wind direction.
Resumo:
The characteristics of a compact plate-fin reformer (PFR) which integrates endothermic and exothermic reactions into one unit have been investigated by experiment as well as by numerical simulation. One reforming chamber was integrated with two vaporization chambers and two combustion chambers to constitute a single unit of PFR. In the PFR, which is based on a plate-fin beat exchanger, catalytic combustion of the reforming gas is used to simulate the fuel cell anode off gas (AOG) which supplies the necessary heat for the methanol steam reforming. Temperature distributions in all chambers and composition distribution in reforming chamber have been studied, and the effect of the ratio of H2O/CH3OH on the performance of the PFR has also been investigated. A model of the PFR was derived using a three-dimensional numerical model for a cross-current flow arrangement. Theoretical predictions of the temperature distributions in the PFR were in good agreement with experimental values. In addition, the numerical model was able to accurately predict the methanol conversion and the reformate composition in reforming chamber. © 2005 Elsevier B.V. All rights reserved.
Resumo:
A compact plate-fin reformer (PFR) consisting of closely spaced plate-fins, in which endothermic and exothermic reactions take place in alternate chambers, has been studied. In the PFR, which was based on a plate-fin heat exchanger, catalytic combustion of the reforming gas, as a simulation of the fuel cell anode off gas (AOG), supplied the necessary heat for the reforming reaction. One reforming chamber, which was for hydrogen production, was integrated with two vaporization chambers and two combustion chambers to constitute a single unit of PFR. The PFR is very compact, easy to be placed and scaled up. The effect of the ratio of H2O/CH3OH on the performance of the PFR has been investigated, and temperature distributions in different chambers were studied. Besides, the stationary behavior of the PFR was also investigated. Heat transfer of the reformer was enhanced by internal plate-fins as well as by external catalytic combustion, which offer both high methanol conversion ratio and low CO concentration. In addition, the fully integrated reformer exhibited good test stability. Based on the PFR, a scale-up reformer was designed and operated continuously for 1000 h, with high methanol conversion ratio and low CO concentration. (c) 2004 International Association for Hydrogen Energy. Published by Elsevier Ltd. All rights reserved.