66 resultados para tungsten trioxide
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
A tri-phasic catalytic system consisting of aqueous hydrogen peroxide, benzyl alcohol and a solid catalyst such as tungsten trioxide has been proved effective for the oxidation of benzyl alcohol in the presence of cetyl trimethyl aniline bromide (CTMAB). At first, the oxide reacts with CTMAB to form a complex, which can be oxidized by aqueous hydrogen peroxide to form a peroxide which effectively oxidizes benzyl alcohol.
Resumo:
Tungsten-tellurite glass with molar composition of 60TeO(2)-30WO(3)-10Na(2)O has been investigated for developing planar broadband waveguide amplifier application. Spectroscopic properties and thermal stability of Er3+-doped tungsten-tellurite glass have been discussed. The results show that the introduction Of WO3 increases significantly the glass transition temperature and the maximum phonon energy. Er3+-doped tungsten-tellurite glass exhibits high glass transition temperature (377 degrees C), large emission cross-section (0.91 x 10(-20) cm(2)) at 1532 nm and broad full width at half maximum (FWHM), which make it preferable for broadband Er3+-doped waveguide amplifier application. (c) 2005 Elsevier B.V. All rights reserved.
HIGH-EFFICIENCY TOP SURFACE-EMITTING LASERS FABRICATED BY 4 IMPLANTATION USING TUNGSTEN WIRE AS MASK
Resumo:
We report the results of a high efficiency room temperature continuous wave (cw) vertical-cavity surface-emitting laser. The structure is obtained by four deep H+ implantation using tungsten wires as the mask. The fabrication process is the simplest ever reported in vertical-cavity surface-emitting laser fabrication. The largest differential quantum efficiency of 65% and maximum cw light output power over 4 mW have been achieved for the 15X15 mu m(2) device. (C) 1995 American Institute of Physics.
Resumo:
We have studied the excitation and dissociation processes of the molecule W(CO)(6) in collisions with low kinetic energy (3 keV) protons, monocharged fluorine, and chlorine ions using double charge transfer spectroscopy. By analyzing the kinetic energy loss of the projectile anions, we measured the excitation energy distribution of the produced transient dications W(CO)(6)(2+). By coincidence measurements between the anions and the stable or fragments of W(CO)(6)(2+), we determined the energy distribution for each dissociation channel. Based on the experimental data, the emission of the first CO was tentatively attributed to a nonstatistical direct dissociation process and the emission of the second or more CO ligands was attributed to the statistical dissociation processes. The dissociation energies for the successive breaking of the W-CO bond were estimated using a cascade model. The ratio between charge separation and evaporation (by the loss of CO+ and CO, respectively) channels was estimated to be 6% in the case of Cl+ impact. (C) 2011 American Institute of Physics. [doi: 10.1063/1.3523347]
Resumo:
By introducing tungsten oxide (WO3) doped N,N-'-di(naphthalen-1-yl)-N,N-'-diphenyl-benzidine (NPB) hole injection layer, the great improvement in device efficiency and the organic film morphology stability at high temperature were realized for organic light-emitting diodes (OLEDs). The detailed investigations on the improvement mechanism by optical, electric, and film morphology properties were presented. The experimental results clearly demonstrated that using WO3 doped NPB as the hole injection layer in OLEDs not only reduced the hole injection barrier and enhanced the transport property, leading to low operational voltage and high efficiency, but also improved organic film morphology stability, which should be related to the device stability. It could be seen that due to the utilization of WO3 doped NPB hole injection layer in NPB/tris (8-quinolinolato) aluminum (Alq(3))-based device, the maximum efficiency reached 6.1 cd A(-1) and 4.8 lm W-1, which were much higher than 4.5 cd A(-1) and 1.1 lm W-1 of NPB/Alq(3) device without hole injection layer. The device with WO3 doped NPB hole injection layer yet gave high efficiency of 6.1 cd A(-1) (2.9 lm W-1) even though the device was fabricated at substrate temperature of 80 degrees C.
Synthesis and structural characterization of new tungsten(VI) complexes with polycarboxylate ligands
Resumo:
The reactions of (NH4)(2)WS4 and three polycarboxylate ligands {including nitrilotriacetate (nta(3-)), citrate (Hcit(3-)) and ethylenediaminetetra acetate (EDTA(4-))} in H2O/EtOH at ambient temperature have resulted in three new trioxotungsten (VI) complexes, K-3[WO3(nta)]center dot H2O 1, (NH4)(4)[WO3(cit)]center dot 2 H2O 2 and K-2(NH4)(2)[W2O6(EDTA)]center dot 4H(2)O 3, respectively. These three complexes have been characterized by IR, XPS, TGA-DTA, H-1 and C-13 NMR spectroscopy. And their structures have been determined by X-ray crystallographic studies, which confirm that I and 2 are mononuclear compounds and 3 is a binuclear compound. Each tungsten atom in 1-3 is coordinated to three unshared oxygen atoms, which adopt fac stereochemistry, while the remaining fac positions are occupied by three atoms from the ligands. The electrochemical properties of 2 and 3 have been investigated.
Resumo:
Molybdenum trioxide nanobelts and prism-like particles with good crystallinity and high surface areas have been prepared by a facile hydrothermal method, and the morphology could be controlled by using different inorganic salts, such as KNO3, Ca(NO3)(2), La(NO3)(3), etc. The possible growth mechanism of molybdenum trioxide prism-like particles is discussed on the basis of the presence of HI and the modification of metal cations. The as-prepared nanomaterials are characterized by means of powder X-ray diffraction (PXRD), field-emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), high-resolution TEM (HRTEM), Fourier transformation infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS), and ultraviolet and visible spectroscopy (UV-vis). TEM and HRTEM micrographs show that the molybdenum trioxide nanobelts and prism-like particles have a relatively high degree of crystallinity and uniformity. BET specific surface areas of the as-prepared molybdenum trioxide nanocrystals are 67-79 m(2)g(-1). XPS analysis indicates that the hexavalent molybdenum is predominant in the nanocrystals. UV-vis spectra reveal that the direct band gap energy of the annealed molybdenum trioxide prism-like particles shows a pronounced blue shift compared to that of bulk MoO3 powder.
Resumo:
In this work, a novel substitutional solid solution (W0.8Al0.2)C was synthesized by mechanically activated high-temperature reaction. X-ray diffraction was used for phase identification during the whole reaction process. Environment scanning electronic microscopy-field emission gun and energy dispersive x-ray were used to investigate the microstructure and the quantitative material composition of the specimen. (W(0.8)A(10.2))C was found to crystallize in the WC-type, and the cell parameters were a = 2.907(1) angstrom and c = 2.837(1) angstrom. The hardness of (W0.8Al0.2)C was tested to be 19.3 +/- 1 GPa, and the density was 13.19 +/- 0.05 g cm(-3).
Resumo:
Both dinuclear [3] ferrocenophane derivatives of the type Fe(C5H4E)(2)[MLn] [E = S,Se; MLn = Cp* - Cr(NO) (1), Cp* Mo(NO) (2a,2b), CpMo(NO) (3), Cp* W(NO) (4a,4b), Ca2Mo (6b), Cp2W (7a)] and trinuclear 1,1' - ferrocene dichalcogenato complexes Fe(C5H4E)(2)[MLn](2)[MLn = Cp* Cr(NO)(2), E = S(8a), Se(8b)] were synthesized and characterized by their IR, H-1 MMR and EI - MS spectra as well as their elemental analyses.