44 resultados para tunable magnetic-electric

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We study the spin-dependent electron transport in a special magnetic-electric superlattice periodically modulated by parallel ferromagnetic metal stripes and Schottky normal-metal stripes. The results show that, the spin-polarized current can be well controllable by modulating the magnetic strength of the ferromagnetic stripes or the voltage applied to the Schottky normal-metal stripes. It is obvious that, to the system of the magnetic superlattice, the polarized current can be enhanced by the magnetic strength of ferromagnetic stripes. Nevertheless, it is found that, for the magnetic-electric superlattice, the polarized current can also be remarkably advanced by the voltage applied to the Schottky normal-metal stripes. These results may indicate a useable approach for tunable spintronic devices. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Electron spin-dependent transport properties have been theoretically investigated in two-dimensional electron gas (2DEG) modulated by the magnetic field generated by a pair of anti-parallel magnetization ferromagnetic metal stripes and the electrostatic potential provided by a normal metal Schottky stripe. It is shown that the energy positions of the spin-polarization extremes and the width of relative spin conductance excess plateau could be significantly manipulated by the electrostatic potential strength and width, as well as its position relative to the FM stripes. These interesting features are believed useful for designing the electric voltage controlled spin filters. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The electric-tunable spin-independent magneto resistance effect has been theoretically investigated in ballistic regime within a two-dimensional electron gas modulated by magnetic-electric barrier nanostructure. By including the omitted stray field in previous investigations oil analogous structures, it is demonstrated based on this improved approximation that the magnetoresistance ratio for the considered structure can be efficiently enhanced by a proper electric barrier up to the maximum value depending on the specific magnetic suppression. Besides, it is also shown the introduction of positive electrostatic modulation can effectively overcome the degradation of magnetoresistance ratio for asymmetric configuration and enhance the visibility of periodic pattern induced by the size effect, while for an opposite modulation the system magnetoresistance ratio concerned may change its sign. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We have theoretically investigated ballistic electron transport through a combination of magnetic-electric barrier based on a vertical ferromagnet/two-dimensional electron gas/ferromagnet sandwich structure, which can be experimentally realized by depositing asymmetric metallic magnetic stripes both on top and bottom of modulation-doped semiconductor heterostructures. Our numerical results have confirmed the existence of finite spin polarization even though only antisymmetric stray field B-z is considered. By switching the relative magnetization of ferromagnetic layers, the device in discussion shows evident magnetoconductance. In particular, both spin polarization and magnetoconductance can be efficiently enhanced by proper electrostatic barrier up to the optimal value relying on the specific magnetic-electric modulation. (C) 2009 American Institute of Physics. [DOI: 10.1063/1.3041477]

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We have theoretically investigated ballistic electron transport through a combination of magnetic-electric barrier based on a vertical ferromagnet/two-dimensional electron gas/ferromagnet sandwich structure, which can be experimentally realized by depositing asymmetric metallic magnetic stripes both on top and bottom of modulation-doped semiconductor heterostructures. Our numerical results have confirmed the existence of finite spin polarization even though only antisymmetric stray field B-z is considered. By switching the relative magnetization of ferromagnetic layers, the device in discussion shows evident magnetoconductance. In particular, both spin polarization and magnetoconductance can be efficiently enhanced by proper electrostatic barrier up to the optimal value relying on the specific magnetic-electric modulation. (C) 2009 American Institute of Physics. [DOI 10.1063/1.3041477]

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Curie temperature of diluted magnetic semiconductor (DMS) nanowires and nanoslabs is investigated using the mean-field model. The Curie temperature in DMS nanowires can be much larger than that in corresponding bulk material due to the density of states of one-dimensional quantum wires, and when only one conduction subband is filled, the Curie temperature is inversely proportional to the carrier density. The T-C in DMS nanoslabs is dependent on the carrier density through the number of the occupied subbands. A transverse electric field can change the DMS nanowires from the paramagnet to ferromagnet, or vice versae. (c) 2007 American Institute of Physics.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

The electronic structure, Zeeman splitting, and g factor of Mn-doped CdS nanowires are studied using the k center dot p method and the mean field model. It is found that the Zeeman splittings of the hole ground states can be highly anisotropic, and so can their g factors. The hole ground states vary a lot with the radius. For thin wire, g(z) (g factor when B is along the z direction or the wire direction) is a little smaller than g(x). For thick wire, g(z) is mcuh larger than g(x) at small magnetic field, and the anisotropic factor g(z)/g(x) decreases as B increases. A small transverse electric field can change the Zeeman splitting dramatically, so tune the g(x) from nearly 0 to 70, in thick wire. The anisotropic factor decreases rapidly as the electric field increases. On the other hand, the Zeeman splittings of the electron ground states are always isotropic.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The fast electron propagation in an inverse cone target is investigated computationally and experimentally. Two-dimensional particle-in-cell simulation shows that fast electrons with substantial numbers are generated at the outer tip of an inverse cone target irradiated by a short intense laser pulse. These electrons are guided and confined to propagate along the inverse cone wall, forming a large surface current. The propagation induces strong transient electric and magnetic fields which guide and confine the surface electron current. The experiment qualitatively verifies the guiding and confinement of the strong electron current in the wall surface. The large surface current and induced strong fields are of importance for fast ignition related researches.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Within the framework of classic electromagnetic theories, we have studied the sign of refractive index of optical medias with the emphases on the roles of the electric and magnetic losses and gains. Starting from the Maxwell equations for an isotropic and homogeneous media, we have derived the general form of the complex refractive index and its relation with the complex electric permittivity and magnetic permeability, i.e. n = root epsilon mu, in which the intrinsic electric and magnetic losses and gains are included as the imaginary parts of the complex permittivity and permeability, respectively, as epsilon = epsilon(r) + i(epsilon i) and mu = mu(r) + i mu(i). The electric and magnetic losses are present in all passive materials, which correspond, respectively, to the positive imaginary permittivity and permeability epsilon(i) > 0 and mu(i) > 0. The electric and magnetic gains are present in materials where external pumping sources enable the light to be amplified instead of attenuated, which correspond, respectively, to the negative imaginary permittivity and permeability epsilon(i) < 0 and mu(i) < 0. We have analyzed and determined uniquely the sign of the refractive index, for all possible combinations of the four parameters epsilon(r), mu(r), epsilon(i), and mu(i), in light of the relativistic causality. A causal solution requires that the wave impedance be positive Re {Z} > 0. We illustrate the results for all cases in tables of the sign of refractive index. One of the most important messages from the sign tables is that, apart from the well-known case where simultaneously epsilon < 0 and mu < 0, there are other possibilities for the refractive index to be negative n < 0, for example, for epsilon(r) < 0, mu(r) > 0, epsilon(i) > 0, and mu(i) > 0, the refractive index is negative n < 0 provided mu(i)/epsilon(i) > mu(r)/vertical bar epsilon(r)vertical bar. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The hole-mediated Curie temperature in Mn-doped wurtzite ZnO nanowires is investigated using the k center dot p method and mean field model. The Curie temperature T-C as a function of the hole density has many peaks for small Mn concentration (x(eff)) due to the density of states of one-dimensional quantum wires. The peaks of T-C are merged by the carriers' thermal distribution when x(eff) is large. High Curie temperature T-C > 400 K is found in (Zn,Mn)O nanowires. A transverse electric field changes the Curie temperature a lot. (Zn,Mn)O nanowires can be tuned from ferromagnetic to paramagnetic by a transverse electric field at room temperature. (c) 2007 American Institute of Physics.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The electronic structure, electron g factor, and Stark effect of InAs1-xNx quantum dots are studied by using the ten-band k center dot p model. It is found that the g factor can be tuned to be zero by the shape and size of quantum dots, nitrogen (N) doping, and the electric field. The N doping has two effects on the g factor: the direct effect increases the g factor and the indirect effect decreases it. The Stark effect in quantum ellipsoids is high asymmetrical and the asymmetry factor may be 319. (c) 2007 American Institute of Physics.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We examine the electric and magnetic strange form factors of the nucleon in the pseudoscalar-vector SU(3) Skyrme model, with special emphasis on the effects of isospin symmetry breaking (ISB). It is found that ISB has a nontrivial effect on the strange vector form factors of the nucleon and its contribution to the nucleon strangeness is significantly larger than one might naively expect. Our calculations and discussions may be of some significance for the experimental extraction of the authentic strangeness.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

La0.5Ba0.5MnO3 products with novel flowerlike, microcube, and nanocube structures were successfully synthesized by a simple hydrothermal route by controlling the alkalinity of the reaction solutions. The synthesized products were systematically studied by X-ray powder diffraction, field-emission scanning electron microscopy, transmission electron microscopy, and energy dispersive X-ray spectroscopy. The results showed that the formation of the flowerlike structures with a layer assembly experienced a nucleation-aggregation-crystallization growth process, while the cubic structures experienced a nucleation-crystallization growth process due to the effect of different alkalinity in the reaction solutions. The higher alkalinity also led to a decrease in the size in the cubic structures. Suitable temperature and pressure were demonstrated to be crucial to the formation of the flowerlike structures by carrying out further control experiments. The measurement of the magnetic properties of three samples obtained at different alkaline conditions indicated that the size of the La0.5Ba0.5MnO3 products had an obvious influence on their properties; however, the dependence of the properties upon the morphology of the La0.5Ba0.5MnO3 products was minor.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Two new compounds with the formula of CdYMWO7 (M = Cr, Mn) were prepared by solid state reaction. They crystallized with orthorhombic structure with the cell parameters of a = 11.7200 Angstrom, b = 7.1779 Angstrom, c = 6.9805 Angstrom (CdYCrWO7), and a = 11.7960 Angstrom, b = 6.1737 Angstrom, c = 7.6530 Angstrom (CdYMnWO7). These compounds are insulators with high resistivities at room temperature. The temperature dependence of the magnetic susceptibility of CdYMWO7 (M = Cr and Mn) show Curie-Weiss Law's behaviors from 80 to 300 K. The magnetic moments at room temperature fit very well with those corresponding to Cr3+ and Mn3+ ions. This suggests that both Cr and Mn ions exist in + 3 oxidation state in CdYMWO7 compounds. (C) 1998 Elsevier Science Ltd. All rights reserved.