10 resultados para toe

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

10.00% 10.00%

Publicador:

Resumo:

以爆炸排淤填石法为背景,对相关岩土介质的本构模型进行了探讨。分析认为,在以LS.DYNA 动态有限元分析程序对爆炸排淤填石法的数值模拟中,岩土介质不适于采用Mohr.Coulomb 模型,堆石体宜采用Drucker-Prager 模型,淤泥宜采用Prandtl-Reuss 模型;利用LS-DYNA 程序对淤泥的本构模型进行了验证和确认,计算表明:在形成爆炸空腔的高应变率阶段,淤泥表现为理想不可压缩流体的性质;在小药量小抵抗线条件下,在淤泥自重作用下的低应变率变形阶段,其粘性效应可以忽略不计。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper studies the effect of fissure water pressure in different fractures on the critical angle of landslide by laboratory investigation and numerical simulation in order to understand the mechanisms of fissure water pressure on landslide stability. Laboratory observations show that the effect of fissure water pressure on the critical angle of landslide is little when the distance between water-holding fracture and slope toe is three times greater than the depth of fissure water. These experimental results are also simulated by a three-dimensional face-to-face contact discrete element method. This method has included the fissure water pressure and can accurately calculate the critical angle of jointed slope when fissure water pressure in vertical sliding surface exists. Numerical results are in good agreement with experimental observations. It is revealed that the location of water-holding structural surface is important to landslide stability. The ratio of the distance between water-holding fissure and slope toe to the depth of fissure water is a key parameter to justify the effect of fissure water pressure on the critical angle of landslide.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

CC标准进行信息安全产品测评时,传统评估方法使用二值逻辑表示评价结果,只能定性评估,不能体现安全保证量的差异.本文提出依据保护轮廓构建评估框架的方法;将评估员对组件的评价定义为三角模糊数的形式;提出底线折衷法综合各组件评价得出TOE(评估对象)安全保证的量化表示.最后,通过实例表明这是一种CC标准框架正的可操作和较为合理的信息安全产品测评方法.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

通过趾骨切片可以准确鉴定年龄,了解一个物种的最长寿命,也为我们研究确定一个物种的生长特点、性成熟期,以及一个地区一个物种的年龄结构、种群生态(Marnell,1998)和群落生态提供重要信息(Morrison,et a1.,2004)。 本论文使用骨骼鉴龄法对中国浙江省宁波市北仑瑞岩寺林场的镇海棘螈(Echinotriton chinhaiensis)雌性繁群进行了年龄结构研究。结果显示:第一次参加繁殖的年龄为3龄;繁群中数量占优势的是5龄、6龄。而在6龄以后参加繁殖的雌性个体数便开始随着年龄的增大而逐渐减少。参加繁殖的雌性年龄最大个体为8龄。平均年龄为5.13龄。同时对其年龄和头体长、体全长的相关性检验,发现其年龄与头体长和体全长不相关,镇海棘螈雌性的生长方式表现为性成熟后能量主要用于繁殖。 另外,对李子坪大凉疣螈(Tylototriton taliangensis) 雄性繁群进行了年龄结构研究。结果显示:大凉疣螈雄性第一次参加繁殖的年龄为4龄;繁群中数量占优势的是5龄、6龄、7龄。而在7龄以后参加繁殖的雄性个体数便开始随着年龄的增大而逐渐减少。参加繁殖的雄性中年龄最大的个体为10龄。平均年龄为6.7龄。对其年龄和头体长、体全长的相关性检验,发现其年龄与头体长和体全长不相关,大凉疣螈雄性生长特点也表现为性成熟后生长缓慢的特点。 研究材料方面,本文采用野外采样与标本馆标本相结合的方式获得了中国蝾螈科2个重要保护物种繁殖群体的剪(指)趾材料,使得建立于其上的年龄结构工作更加可靠、更加具有代表性。 此外,本论文讨论了镇海棘螈瑞岩寺种群繁殖总量年度间的差异及其产生原因。将1998、1999、2000、2008、2009年镇海棘螈(Echinotriton chinhaiensis) 瑞岩寺种群的繁殖量进行比较,发现虽然雌性平均窝卵数比较稳定,但繁殖总量小于1998、1999、2000年任何一年总产卵量的50%。对2008年镇海棘螈繁殖量大幅下降的原因分析发现, 2007年9、10月影响严重台风的两次强台风、瑞岩寺景区开发等因素可能是造成近年该种群繁殖量大幅下降的原因。而2008年初50年不遇的低温是否影响镇海棘螈的繁殖值得进一步追踪研究。2009年繁殖量较2008年没有明显的增长,可能是由于2007年的台风影响了其繁殖营养的积累。台风的影响可能存在滞后现象,对此有待进一步监测证明。 本研究首次对中国蝾螈科物种进行的年龄结构鉴定,为进一步了解中国蝾螈科动物的种群生态打下了坚实的基础。 Using skeletochronology, we can know the life span of a species, age of reaching sexual mature, and of course age structure, which are vital(Morrison,et a1.,2004). Skeletochronology was performed on Echinotriton chinhaiensis Ruiyansi female population. The result shows that: The oldest individuals were 8 years old and the youngest ones were 3 years old. Individuals of age class 5(39.13%) and 6(21.74%) were most numerous. The number of individuals participated in reproduction decreased with the increase of age after the sixth year. Average age is 5.13 years. There is no correlation between age and body size (SVL and TL). For female chinhai salamander, energy is devoted to reproduction after reaching sexual maturation. While using skeletochronology to study Tylototriton taliangensis Liziping male population, the oldest individuals is 10 years old, and the youngest ones is 4 years old. Individuals of the age class 5, 6, and 7 dominat this population. The number of individuals decrease with the increase of age also after the seventh year. Average age is 6.7 years old in this population. there is also no correlation between age and body size (SVL and TL).It turned out that T. taliangensis tend to grow slowly after reaching sexual maturation. In this thesis, specimens from both wild and museum were used to gain enough toe clipping samples. A big sample size guarantees the reliability of this study. In the meantime, E. chinhaiensis’s annual reproduction of the year 1998, 1999, 2000 ,2008,and 2009 was compared. The result shows there is a huge decline in E. chinhaiensis’s annual reproduction in 2008,even the egg clutch is very stable. After analyzing, it turned out the huge decline in 2008 was probably caused by typhoon in 2007, besides the effect of tourism development and cash crop planting. While the impact of extreme weather of 2008 on reproduction needs further investigation. In the year 2009, there is no obvious increase in annual reproduction. It maybe due to lasting impact of typhoon in 2007. It is the first age-structure study on these two Chinese salamanders. A solid foundation was laid for further population ecology study of these two species.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

genetics, such as: population size, reproduction, mating system, growth, development,genetic structure and systematics status; The main results are presented below: The seasonal variation of the operational sexual ratio of this animal was found in the field and the ration always bias the female in the breeding season. Aiming at this character and considering the distance of time and space of both sexual habitat in breeding season, we census female population first by toe-clipping mark-recapture method, then estimated the population size with the definitive sexual ratio. Up to now, this species was found only at the Beilun district of the Ningbo City. The population size of the Ruiyan Temple Forest Park approximates to 369. The status of this population is extremely endangered, so besides protecting this population at the original locality, we also suggested to breed the salamander in fenced locality and to hatch embryos artificially, and send metamorphosed juveniles back to nature. We can transfer some individuals to other similar habitats or breed them under artificial conditions for saving this species from extinction. The early developmental stage of the Chinhai salamander is the same as its relative species, E. andersoni. Their balanceres are poorly developed and disappear very early. Temperature and moisture significantly influence the embryonic development of the Chinhai salamander. The embryonic stage is approx. 29 days under room temperature. The hatchling grows in a logarithmic curve. The larvae stage in water is approx. 58- 88 days. Many factors influence the nomal development, including two aspects of internal and external. Due to these factors, the effective protected measures were presented in detail. The breeding migration of E. chinhaiensis takes place at late March~late April every year. This salamander's hatching rate is high, but the rate of hatchling migrating into water is low. The average effectiveness of all the nest sites is 36.7%. The maternal self-conservation was contrary to the reproductive success of the egg-laying strategy. In the strategy of egg-laying behavior, the first factor selected by the female was its self-conservation, the second is embryonic survival rate, and the last is rate of hatchling survival rate. The oviposition selection is significant for the survival of the larvae. Based on the analysis of the evolutionary process of reproductive behaviors nad egg-laying site selections of all genera of the family Salamandridae, we deduced that perhaps Echinotriton is a transitional type in the evolutionary process from water to land. Due to its location in the adaptive stage in the terrestrial evolution, Echinotriton chinhaiensis's terrestrial nest may be one of important reason that causes this species to be endangered. The genetic deversity analysis shows that although the population size of the Chinhai salamander is quite small compared to other Chinese salamandrid species, the genetic diversity of this population is not reduce remarkably. We explain this phenomena with the polygamy mating system of this species. The result of 4 families' parenthood determinations shows that the parenhood determination can be taken without any paternal information. The "children" of every female include rich genetic information from at least two "fathers". It implies that female Chinhai salamander mates more than once with different males in a breeding season. The molecular evidence, the behavioral observation evidences and the sperm evidence in the female cloaca proved that this species has a polygamy mating system. The kin recognition in the mating of adult salamander was first discussed. The taxonomic status and phylogenetic relationships of 12 species representing 6 genera in the family Salamandridae were studied using DNA fingerprinting. The results showed that the DNA fingerprinting. The results showed that the DNA fingerprinting patterns demonstrated rich genetic diversity and species diversity, and also revealed the taxonomic status and phylogenetic relationshipes of higher taxa to a certain extent. The results are highly consistent with those obtained from the studies based on the morphology, ecology, cytology and molecular biology. The compreshensive analysis indicate that Tylototrition hainanensis and T. wenxianensis should be valid species; Echinotriton should be a valid genus;Tylotortriton is a natural cluster; Tylotortriton asperrimus should be put in Tylototrition rather than in Echinotriton, Hypselotriton and Allomestriton are synonyms of Cynops and Paramesotriton, respectively. There are three main groups in Chinese salamandride: Cynops, Paramesotriton and Pachytrition from the first group, the species of the Tylototriton from the second, and E. chinhaiensis composes the third.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Based on field survey, laboratory testing and numerical modeling, engineering characteristics of undisturbed loess and the mechanism of long-runout loess landslides caused by underground water level rise, as well as the formation conditions and spatial distribution of landslides, are systematically studied and analyzed. Loess landslides at south Plateau of Jingyang County are mainly classified as flowslide, slide and fall. Flowslide is the main type characteristic of high velocity, long runout and multi-stages. The steep relief composed of loose structured loess-old aged soil serials and the rise of groundwater table are the predominant conditions for landslides in the study area. To study loess mechanic poperties and loess landslides mechanisims, isotropically and anisotropically consolidated undrained compression(ICU and ACU) tests and constant-deviator-drained compression (CQD) tests were carried out on undisturbed samples. The results of undrained compression tests performed at the in-situ stress level show that the soils are of consistently strain-softening in the stress-strain relations and cause high excess pore pressure. The steady-state line and the potential region of instability are obtained from ICU and ACU test results. A necessary condition for liquefaction is that the soil state initially lies in or is brought into the potential instability region. In addition, a strong strain-softening model is also formed. CQD tests demonstrate that the mobilized friction angle is far less than the steady-state angle and that the soil experiences undrained contractive failure suddenly at very small strains when its stress path during drained loading tries to cross the potential instability region,thus validates the proposed instability region. Based on the location of the region of potential instability and the stress state of slope soil, a method of static liquefaction analysis is proposed for loess landslides caused by rise in groundwater table. Compared with other liquefaction analysis methods, this method overcomes the limitations inherent in conventional slope stability method and undrained brittleness index method. Triaxial tests composed of constant water content (CW) and wetting tests at constant deviator stress are performed on undisturbed unsaturated samples. The stress-strain relation of CW tests takes on strain-hardening behavior; The results of wetting tests at constant deviator stress designed to study the mechanics of failure of unsaturated loess caused by an increase in the degree of saturation (wetting) shows that a contractive failure occurs in the undisturbed samples. On the basis of the above triaxial test results, the initiation of static liquefaction is presented for long-runout loess landslides caused by rise in groundwater table, that is, the loess slope soil gradually transfer from unsaturated to saturated state under the infiltration of irrigation. A contractive failure occurs in the local region at very small strain by increasing the pore-water pressure at constant deviator stresses under drained conditons. It is the contractive failrue resulting from rise of pore pressure that leads to high excess pore pressure in the neighbour soil which reduces shear resistance of soil. The neighbour soils also fail due to the rapid increase in pore-water pressure. Thus a connected failure surface is developed quickly and a flowslide occurs. Based on the saturated-unsaturated seepage theory, transient seepage is computed using the finite element method on loess slope under groundwater table rise. Pore-water pressure distribution for every time step after irrigation are obtained. The phreatic surface in the slope increases with the groundwater table. Pore-water pressure distribution within 8m above the phreatic surface changes very quickly,but the water content and pore water pressure in the region ranging from 8m above the phreatic surface up to ground surface is almost not affected and the matric suction usually is kept at 100~120 kPa. Based on the results of laboratory tests and seepage flow analysis, the development process of loess landslide is modeled considering groundwater table rise. The shearing plastic zone first occurs at the slope toe where the soil is soaked for long term during rise in groundwater table. As irrigation continues, the shearing plastic zone gradually extends to the interior soils, with the results that the tensile plastic zone occurs at the slope crown. As time goes on, both the shearing plastic zone and tensile plastic zone continue to extend. Then a connected plastic zone is formed and fowslide occurs. In comparision to laboratory test results, the results of numerical simulation quite well verify the presented mechanism of static liquefaction of long-runout loess landslides caused by rise in groundwater table.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Theory of limit analysis include upper bound theorem and lower bound theorem. To deal with slope stability analysis by limit analysis is to approximate the real solution from upper limit and lower limit. The most used method of limit analysis is upper bound theorem, therefore it is often applied to slope engineering in many cases. Although upper bound approach of limit analysis can keep away from vague constitutive relation and complex stress analyses, it also can obtain rigorous result. Assuming the critical surface is circular slip surface, two kinematically admissible velocity fields for perpendicular slice method and radial slice method can be established according to the limit analysis of upper bound theorem. By means of virtual work rate equation and strength reduction method, the upper-bound solution of limit analysis for homogeneous soil slope can be obtained. A log-spiral rotational failure mechanism for homogeneous slope is discussed from two different conditions which represent the position of shear crack passing the toe and below the toe. In the dissertition, the author also establishes a rotational failure mechanics with combination of different logarithmic spiral arcs. Furthermore, the calculation formula of upper bound solution for inhomogeneous soil slope stability problem can be deduced based on the upper bound approach of rigid elements. Through calculating the external work rate caused by soil nail, anti-slide pile, geotechnological grid and retaining wall, the upper bound solution of safety factor of soil nail structure slope, slip resistance of anti-slide pile, critical height of reinforced soil slope and active earth pressure of retaining wall can be obtained by upper bound limit analysis method. Taking accumulated body slope as subject investigated, with study on the limit analysis method to calculate slope safety factor, the kinematically admissible velocity fields of perpendicular slice method for slope with broken slip surface is proposed. Through calculating not only the energy dissipation rate produced in the broken slip surfaces and the vertical velocity discontinuity, but also the work rate produced by self-weight and external load, the upper bound solution of slope with broken slip surface is deduced. As a case study, the slope stability of the Sanmashan landslide in the area of the Three Gorges reservoir is analyzed. Based on the theory of limit analysis, the upper bound solution for rock slope with planar failure surface is obtained. By means of virtual work-rate equation, energy dissipation caused by dislocation of thin-layer and terrane can be calculated; furthermore, the formulas of safety factor for upper bound approach of limit analysis can be deduced. In the end, a new computational model of stability analysis for anchored rock slope is presented after taking into consideration the supporting effect of rock-bolts, the action of seismic force and fissure water pressure. By using the model, not only the external woke-rate done by self-weight, seismic force, fissure water pressure and anchorage force but also the internal energy dissipation produced in the slip surface and structural planes can be totally calculated. According to the condition of virtual work rate equation in limit state, the formula of safety factor for upper bound limit analysis can be deduced.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

China locates between the circum-Pacific and the Mediterranean-Himalayan seismic belt. The seismic activities in our country are very frequent and so are the collapses and slides of slope triggered by earthquakes. Many collapses and slides of slope take place mainly in the west of China with many earthquakes and mountains, especially in Sichuan and Yunnan Provinces. When a strong earthquake happening, the damage especially in mountains area caused by geological hazards it triggered such as rock collapses, landslides and debris flows is heavier than that it caused directly. A conclusion which the number of lives lost caused by geological hazards triggered by a strong earthquake in mountains area often accounts for a half even more of the total one induced by the strong earthquake can be made by consulting the statistical loss of several representative earthquakes. As a result, geological hazards such as collapses and slides of slope triggered by strong earthquakes attract wide attention for their great costs. Based on field geological investigation, engineering geological exploration and material data analysis, chief conclusions have been drawn after systematic research on formation mechanism, key inducing factors, dynamic characteristics of geological hazards such as collapses and slides of slope triggered by strong earthquakes by means of engineering geomechanics comprehensive analysis, finite difference numerical simulation test, in-lab dynamic triaxial shear test of rock, discrete element numerical simulation. Based on research on a great number of collapses and landslides triggered by Wenchuan and Xiaonanhai Earthquake, two-set methods, i.e. the method for original topography recovering based on factors such as lithology and elevation comparing and the method for reconstructing collapsing and sliding process of slope based on characteristics of seism tectonic zone, structural fissure, diameter spatial distribution of slope debris mass, propagation direction and mechanical property of seismic wave, have been gotten. What is more, types, formation mechanism and dynamic characteristics of collapses and slides of slope induced by strong earthquakes are discussed comprehensively. Firstly, collapsed and slided accumulative mass is in a state of heavily even more broken. Secondly, dynamic process of slope collapsing and sliding consists of almost four stages, i.e. broken, thrown, crushed and river blocked. Thirdly, classified according to failure forms, there are usually four types which are made up of collapsing, land sliding, land sliding-debris flowing and vibrating liquefaction. Finally, as for key inducing factors in slope collapsing and sliding, they often include characteristics of seism tectonic belts, structure and construction of rock mass, terrain and physiognomy, weathering degree of rock mass and mechanical functions of seismic waves. Based on microscopic study on initial fracturing of slope caused by seismic effect, combined with two change trends which include ratio of vertical vs. horizontal peak ground acceleration corresponding to epicentral distance and enlarging effect of peak ground acceleration along slope, key inducing factor of initial slope fracturing in various area with different epicentral distance is obtained. In near-field area, i.e. epicentral distance being less than 30 km, tensile strength of rock mass is a key intrinsic factor inducing initial fracturing of slope undergoing seismic effect whereas shear strength of rock mass is the one when epicentral distance is more than 30 km. In the latter circumstance, research by means of finite difference numerical simulation test and in-lab dynamic triaxial shear test of rock shows that initial fracture begins always in the place of slope shoulder. The fact that fracture strain and shear strength which are proportional to buried depth of rock mass in the place of slope shoulder are less than other place and peak ground acceleration is enlarged in the place causes prior failure at slope shoulder. Key extrinsic factors inducing dynamic fracture of slope at different distances to epicenter have been obtained through discrete element numerical simulation on the total process of collapsing and sliding of slope triggered by Wenchuan Earthquake. Research shows that combined action of P and S seismic waves is the key factor inducing collapsing and sliding of slope at a distance less than 64 km to initial epicenter along earthquake-triggering structure. What is more, vertical tensile action of P seismic wave plays a leading role near epicenter, whereas vertical shear action of S seismic wave plays a leading role gradually with epicentral distance increasing in this range. On the other hand, single action of P seismic wave becomes the key factor inducing collapsing and sliding of slope at a distance between 64 km and 216 km to initial epicenter. Horizontal tensile action of P seismic wave becomes the key factor gradually from combined action between vertical and horizontal tensile action of P seismic wave with epicentral distance increasing in this distance range. In addition, initial failure triggered by strong earthquakes begins almost in the place of slope shoulder. However, initial failure beginning from toe of slope relates probably with gradient and rock occurrence. Finally, starting time of initial failure in slope increases usually with epicentral distance. It is perhaps that the starting time increasing is a result of attenuating of seismic wave from epicenter along earthquake-triggering structure. It is of great theoretical and practical significance for us to construct towns and infrastructure in fragile geological environment along seism tectonic belts and conduct risk management on earthquake-triggered geological hazards by referring to above conclusions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Rockfall is a geological evolution process involving detachment of blocks or boulders from a slope face, then their free falls, bouncing, rolling or sliding, and finally deposition near the toe of the slope. Many facts indicate that the rockfall can cause hazards to peoples, and it can be regarded as a geological hazard. A rockfall event may only involve a boulder or rock, and also several ones. When there are peoples, buildings, or other man-made establishments within the scope of rockfall trajectory, losses will be possibly induced in tenns of human lives or damages to these facilities. Researches into mechanism, kinematics, dynamics, hazard assessment, risk analysis, and mitigation measures of rockfalls are extremely necessary and important. Occurrence of rockfall is controlled by a lot of conditions, mainly including topographical, geomorphic, geological ones and triggering factors. The rockfall especially in mountainous areas, has different origins, and occurs to be frequent, unexpected, uncertain, in groups, periodic and sectional. The characterization and classification of the rockfalls not only increase knowledge about rockfall mechanism, but also can instruct mitigation of the hazards. In addition, stability of potential rockfalls have various sensitivity to different triggering factors and changes of geometrical conditions. Through theoretical analyses, laboratory experiments and field tests, the author presents some back-analysis methods for friction coefficients of sliding and rolling, and restitution coefficients. The used input data can be obtained economically and accurately in the field. Through deep studies on hazard assessment methods and analysis of factors influencing rockfall hazard, this paper presents a new assessment methodology consisting of preliminary assessment and detailed one. From the application in a 430 km long stretch of the Highway, which is located between Paksho and Nyingtri in Tibet, the methodology can be applicable for the rockfall hazard assessment in complex and difficult terrains. In addition, risk analyses along the stretch are conducted by computing the probability of encountering rockfalls and life losses resulting from rockfall impacts. Rockfall hazards may be mitigated by avoiding hazardous areas, clearness of dangerous rocks, reinforcement, obstructing the rockfalls, leading the rockfalls, warning and monitoring for rockfalls, etc. Seen from present remedial level of rockfall hazards, different mitigation measures, economical and effective buffering units, monitoring tecliniques and consciousness of environmental protection for rockfall mitigations should be further developed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

On the basis of the geological analysis and rock mass toppling deformation and failure mechanism analysis of Longtan engineering left bank slope, the synthetic space-time analysis and influence factors analysis on the surface monitoring data and deep rock mass monitoring data of B-zone of left bank slope are carried on. At the same time, based on the monitoring data analysis in conjunction with the predecessor's mechanics analysis results, the deformation state of B-zone of the left bank slope is discussed and its stability is synthetically evaluated. The detailed research contents and results are as following: According to the monitoring drill histogram analysis of Longtan engineering left bank slope, numerical simulation analysis and model experimentation analysis of bedded counter-inclined steep slope, a new type of toppling deformation and failure mode is proposed, that is "up-slope warping". Then the deformation and failure mode of bedded counter-inclined steep slope is summarized as "down-slope toppling" type, "up-slope warping" type and "complex fold" type. On the basis of synthetic space-time analysis to surface monitoring data and deep rock mass deformation monitoring data of B-zone of Longtan left bank slope;, we can get the conclusion that there exists potential instability rock mass over 520m altitude, especially over 560m altitude of slope B, and the rock mass of around strong-weathering line or creep rock mass breaking band controls the deformation of the whole slope. 1. According to the synthetic space-time analysis and influence factors analysis to the surface monitoring data of B-zone of Longtan left bank slope, a dynamical index, accumulative total acceleration index, which is used to analyze the influence factors of slope surface deformation, is raised. The principle and method of accumulative acceleration index are explained, and the index can be used for the influence factors analysis of the similar slope. 2. Summarize the results of geologic analysis, monitoring analysis and mechanics analysis, the following conclusion can be gotten: the stability of B-zone of the slope is basically good. However, on the condition of drainage and slope toe loading engineering, there is still some creep deformation in the rock mass over 520m altitude, especially over 560m altitude. So, better measures of the monitoring and timely maintenance of the drainage system are suggested in the paper.