11 resultados para titanium oxide
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
A new type of sol-gel-derived titanium oxide/copolymer composite material was developed and used for the construction of glucose biosensor. The composite material merged the best properties of the inorganic species, titanium oxide and the organic copolymer, poly(vinyl alcohol) grafting 4-vinylpyridine (PVA-g-PVP). The glucose oxidase entrapped in the composite matrix retained its bioactivity. Morphologies of the composite-modified electrode and the enzyme electrode were characterized with a scanning electron microscope. The dependence of the current responses on enzyme-loading and pH was studied. The response time of the biosensor was < 20 s and the linear range was up to 9 mM with a sensitivity of 405 nA/mM. The biosensor was stable for at least I month. In addition, the tetrathiafulvalene-mediated enzyme electrode was constructed for the decrease of detection potential and the effect of three common physiological sources that might interfere was also investigated.
Resumo:
Electrocatalytic performance of the Pr-TiOx/Ti electrode prepared with electrochemical reduction-oxidation method toward the oxidation of methanol has been studied, The experimental results showed that the Pt-TiOx/Ti electrode has a high electrocatalytic activity and good stability for the electrocatalytic oxidation of methanol, By means of electrochemical, XPS, STM and in-situ FTIR techniques, it was found that one reason for the electrode to exhibit an excellent performance is attributed to the high dispersion between nanosized Pt and TiOx particles, The low adsorption ability of the intermediate derived from methanol, such as linearly adsorbed CO species on the electrode surface due to the interaction between Pt and TiOx, also results in the excellent performance.
Resumo:
A new type of tyrosinase biosensor was developed for the detection of phenolic compounds, based on the immobilization of tyrosinase in a sol-gel-derived composite matrix that is composed of titanium oxide sol and a grafting copolymer of poly(vinyl alcohol) with 4-vinylpyridine. Tyrosinase entrapped in the composite matrix can retain its activity to a large extent owing to the good biocompatibility of the matrix. The parameters of the fabrication process and the variables of the experimental conditions for the enzyme electrode were optimized. The resulting sensor exhibited a fast response (20 s), high sensitivity (145.5 muA mmol(-1) 1) and good storage stability. A detection limit of 0.5 muM catechol was obtained at a signal-to-noise ratio of 3.
Resumo:
The electrocatalytic oxidation of methanol at the Titanium oxide (TiOx, x<2) film modified with Pt microparticles has been studied. The results show that the modified electrodes exhibit a significant electrocatalytic activity and good stability for the oxidation of methanol. Under the optimal conditions, the peak current density at 0.58 V for the oxidation of methanol in the positive-going sweep is about 526 mA/cm(2) at the scan rate of 5 mV/s in 0.5 mol/L CH3OH and 0.5 mol/L H2SO4 solution and the over potential of the methanol oxidation at the modified electrode increases about 30 similar to 40 mV after 70 minutes at the current density of 100 mA/cm(2) and 50 mA/cm(2). The enhanced electrocatalytic activity and good stability are ascribed to the high dispersion of Pt microparticles in and on the TiOx film and the synergistic effect between Pt microparticles and TiOx.
Resumo:
A highly sensitive microstructured polymer optical fiber (MPOF) probe for hydrogen peroxide was made by forming a rhodamine 6G-doped titanium dioxide film on the side walls of array holes in an MPOF. It was found that hydrogen peroxide only has a response to the MPOF probe in a certain concentration of potassium iodide in sulfuric acid solution. The calibration graph of fluorescence intensity versus hydrogen peroxide concentration is linear in the range of 1.6 x 10(-7) mol/L to 9.6 x 10(-5) mol/L. The method, with high sensitivity and a wide linear range, has been applied to the determination of trace amounts of hydrogen peroxide in a few real samples, such as rain water and contact lens disinfectant, with satisfactory results.
Resumo:
Polyimide hybrid films containing bimetalic compounds were obtained by codoping poly(amic acid) with a barium and titanium precursor prepared from BaCO3, Ti(OBu)(4), and lactic acid followed by casting and thermal curing. FTIR, WAXD, and XPS measurements showed that barium and titanium precursor could be transformed to BaTiO3 at a temperature above 650 degreesC, while the mixed oxides were only found in hybrid films. The measurements of TEM and AFM indicated a homogeneous distribution of inorganic phase with particle sizes less than 50 nm. The hybrid films exhibited fairly high thermal stability, good optical transparency, and promising mechanical properties. The incorporation of 10 wt % barium and titanium oxide lowered surface and volume electrical resistivity by 2 and 5 orders, respectively, increasing dielectric constant from 3.5 to 4.2 and piezoelectric constant from 3.8 to 5.2 x 10(-12) c/N, relative to the nondoped polyimide film.
Resumo:
利用射频磁控溅射法室温下在Si(100)衬底上制备了N掺杂的TiO2薄膜,并且采用x射线衍射(XRD)、X射线光电子能谱(XPS)和透射光谱对薄膜进行了表征。XRD结果表明在纯Ar和N2(33.3%)/Ar气氛下制备的TiO2-xNx薄膜均为单一的金红石相,薄膜结晶性良好,呈高度(211)择优取向,而在N2(50.0%)/Ar下制备的薄膜结晶性明显变差;对于N掺杂的TiO2薄膜,XPS表明部分N原子进入TiO2晶格,并且以N—Ti—O、N—O键以及间隙式N原子形式存在;透射光谱表明掺N后的TiO2薄膜吸收边发生了红移。
Resumo:
A three dimensional analysis of a special class of anisotropic materials is presented. We introduce an extension of the Scattering Matrix Method (SMM) to investigate the behavior of anisotropic Photonic Crystal Slabs (PhCS) subject to external radiation. We show how the Fano effect can play a fundamental role in the realization of tunable optical devices. Moreover, we show how to utilize electron injection, electric field and temperature as parameters to control the Fano resonance shift in both isotropic and anisotropic materials as Si and Potassium Titanium Oxide Phosphate (KTP). We will see that because Fano modes are sensitive and controllable, a broad range of applications can be considered. (c) 2006 Optical Society of America
Resumo:
A simple and efficient method has been established for the selective synthesis of mesoporous and nanorod CeVO4 with different precursors by sonochemical method. CeVO4 nanorod can be simply synthesized by ultrasound irradiation of Ce(NO3)(3) and NH4VO3 in aqueous solution without any surfactant or template. While mesoporous CeVO4 with high specific surface area can be prepared with Ce(NO3)(3), V2O5 and NaOH in the same way. Mesoporous CeVO4 has a specific surface area of 122 m(2) g(-1) and an average pore size of 5.2 nm; CeVO4 nanorods have a diameter of about 5 nm, and a length of 100-150 nm. The ultrasound irradiation and ammonia in the reactive solution are two key factors in the formation of such rod-like products. X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), thermogravimetric (TG) and differential thermal analyses (DTA), UV/vis absorption spectroscopy and Brunauer-Emmett-Teller (BET) were applied for characterization of the as-prepared products.
Resumo:
A simple, efficient and quick method has been established for the synthesis of CePO4:Tb nanorods and CePO4:Tb/LaPO4 core/shell nanorods via ultrasound irradiation of inorganic salt aqueous solution under ambient conditions for 2 h. The as-prepared products were characterized by means of powder x-ray diffraction (PXRD), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), selected area electron diffraction ( SAED), x-ray photoelectron spectroscopy (XPS), photoluminescence (PL) spectra and lifetimes. TEM micrographs show that all of the as-prepared cerium phosphate products have rod-like shape, and have a relatively high degree of crystallinity and uniformity. HRTEM micrographs and SAED results prove that these nanorods are single crystalline in nature. The emission intensity and lifetime of the CePO4:Tb/LaPO4 core/shell nanorods increased significantly with respect to those of CePO4: Tb core nanorods under the same conditions. A substantial reduction in reaction time as well as reaction temperature is observed compared with the hydrothermal process.