6 resultados para thickness change

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

70.00% 70.00%

Publicador:

Resumo:

We report a radio frequency magnetron sputtering method for producing TiO2 shell coatings directly on the surface of ZnO nanorod arrays. ZnO nanorod arrays were firstly fabricated on transparent conducting oxide substrates by a hydrothermal route, and subsequently decorated with TiO2 by a plasma sputtering deposition process. The core/shell nanorods have single-crystal ZnO cores and anatase TiO2 shells. The shells are homogeneously coated onto the whole ZnO nanorods without thickness change. This approach enables us to tailor the thickness of the TiO2 shell for desired photovoltaic applications on a one-nanometer scale. The function of the TiO2 shell as a blocking layer for increasing charge separation and suppression of the surface recombination was tested in dye-sensitized solar cells. The enhanced photocurrent and open-circuit voltage gave rise to increased photovoltaic efficiency and decreased dark current, indicating successful functioning of the TiO2 shell.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The applications of scanning probe microscopy (SPM) in intrinsically conducting polymer research is briefly reviewed, including morphology observation, nanofabrication, microcosmic electrical property measurements, electrochemistry researches, in-situ measurements of film thickness change, and so on. At the same time, some important variations of SPM and the related techniques are briefly introduced. Finally, the future development of SPM in the study of intrinsically conducting polymers is prospected.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

South China Sea is located in the convergence of Eurasian plate, the Pacific Ocean plate and Indian Ocean-Australia plate. The total area is about 3,500,000 km2, the geologic structure is complicated, and the structure line cut off reciprocal is the marginal sea taking form by that the seafloor spreads during the middle Oligocene. South China Sea continental margin have developed more than 10 large oil-gas bearing basins and a number of medium-small sized basins. These basins contain abundant mineral resources such as oil & gas. The marginal deepwater area in the north part of South China Sea has become our country’s strategic energy prospecting frontier. The deepwater area of Zhujiangkou and Qiongdongnan basins is the research target in this thesis. The thesis studied deep structure and the earth dynamics of the north part of South China Sea margin, and these researches provide scientific basis for oil-gas resources strategic investigation and valuation in deepwater sea area of north part slope of South China Sea. In order to develop the research of rebuilding velocities and density architecture of earth shell in region of interest, in marginal deepwater area in the north part of South China, we adopted 14 long-cable seismic reflection profile data of 3556.41 kilometers in total, the gravity measurement data along profiles (3851.44 kilometers in total), the magnetic observation along profiles (3838.4 kilometers in total) and depth measurement along profile, the logging data of 11 wells in project, the interpreted fault parameter and preexisting geologic and geophysical research achievement. This thesis has carried out concretely studying research as follows: 1. Overlay-velocity data sampling and analysis, interval velocity calculation, time-depth conversion, model building of earth shell velocity and layering character of earth shell are studied on 14 deep sections. Velocity structure in region of interest has revealed: Changchang is the sag with thinnest crust in Qiongdongnan basin; the sedimentary thickness lowers gradually from north to south, and the thickness change from west to east is milder. The sags’ sedimentary velocities in Qiongdongnan basin have obvious demarcation. The velocity of the 8000 meters sedimentary rocks is 4700 m/s in Shunde sag and Baiyun sag, and is the lowest; at that depth, the velocity very different in Liwan sag and Baiyun sag, which is about 800m/s. 2. Extracting gravity data and building of initial crust density model along the section; With Bouguer gravity anomaly data as constraint, revising density distributes of initial model, and building the crust density model. 3. With crust velocity and density as constraint, correcting the effect of thermobaric field and constructing constitution structure of rock in region of interest. By this research, we known that rocks in Zhujiangkou upper crustal layer are chiefly granite-gneiss, quartzite, granodiorite and basalt, however, rocks in Qiongdongnan basin upper earth shell are chiefly composed of granite-gneiss, quartzite, granodiorite, diorite and basalt. 4. Synthetically crust velocity and density structure, gaining expanding factor on crust and entire crust along section. The result is indicated: the expanding factor in every sag rises from northwest to southeast, which have reflected thinning characteristic of crust from continent to ocean. Intra-crustal deformation degree in Changchang and Ledong-Lingshui sag is bigger than that in Songnan-Baodao sag. Entire crust extension factor in Changchang and Songnan-Baodao sag is greater than that in Ledong-Lingshui sag, which can make an explanation of frequently event and longer heating process in middle-east of Qiongdongnan basin. 5. Synthesize multidisciplinary information to discuss the earth dynamics significance of discordogenic seismic profile in deepwater area of Zhujiangkou and Qiongdongnan basins.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hot Dip Aluminized Coatings with different thickness were prepared on Q235 steel in aluminum solutions with different temperature for certain time. Through tensile tests and in-situ SEM observations, the effect of the coating's microstructure on the tensile strength of the samples was studied. It was disclosed at certain aluminum solution temperature,transaction layers mainly composed of Fe2 Al5 phase got thicker with time prolonging, and this changed initial crack's extending direction from parallel with to vertical with stretching direction. The change in crack direction decreased tensile strength of samples, thus made the coating easy to break. It was concluded that the existence of thick Fe2 Al5 phase layer was the basic reason for the lowering of tensile strength of the coating.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The defect evolution and its correlation with electrical properties of GaN films grown by metalorganic chemical vapor deposition are investigated. It is found that the dislocation density decreases gradually during the growth process, and the dislocation reduction rate in the island coalescence process is especially rapid. The changes in electron mobility of GaN with the increase of growth time are mainly dependent on the dislocations acting as scattering centers. Furthermore, the variation of carrier concentration in GaN may be related with the point defects and their clusters. The quality of GaN could be improved by suitably increasing the film thickness. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The strain evolution of a GaN layer grown on a high- temperature AlN interlayer with varying AlN thickness by metalorganic chemical vapour deposition is investigated. In the growth process, the growth strain changes from compression to tension in the top GaN layer, and the thickness at which the compressive- to- tensile strain transition takes place is strongly influenced by the thickness of the AlN interlayer. It is confirmed from the x- ray diffraction results that the AlN interlayer has a remarkable effect on introducing relative compressive strain to the top GaN layer. The strain transition process during the growth of the top GaN layer can be explained by the threading dislocation inclination in the top GaN layer. Adjusting the AlN interlayer thickness could change the density of the threading dislocations in the top GaN layer and then change the stress evolution during the top GaN layer's growth.