211 resultados para the crack extension rate
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
An empirical study is made on the fatigue crack growth rate in ferrite-martensite dual-phase (FMDP) steel. Particular attention is given to the effect of ferrite content in the range of 24.2% to 41.5% where good fatigue resistance was found at 33.8%. Variations in ferrite content did not affect the crack growth rate when plotted against the effective stress intensity factor range which was assumed to follow a linear relation with the crack tip stress intensity factor range ΔK. A high corresponds to uniformly distributed small size ferrite and martensite. No other appreciable correlation could be ralated to the microstructure morphology of the FMDP steel. The closure stress intensity factor , however, is affected by the ferrite content with reaching a maximum value of 0.7. In general, crack growth followed the interphase between the martensite and ferrite.
Dividing the fatigue crack growth process into Stage I and II where the former would be highly sensitive to changes in ΔK and the latter would increase with ΔK depending on the ratio. The same data when correlated with the strain energy density factor range ΔS showed negligible dependence on mean stress or R ratio for Stage I crack growth. A parameter α involving the ratio of ultimate stress to yield stress, percent reduction of area and R is introduced for Stage II crack growth so that the data for different R would collapse onto a single curve with a narrow scatter band when plotted against αΔS.
Resumo:
本文针对发展新一代步兵战车复合材料履带板所面临的关键问题,结合其实际受载特点,设计制备了冲击疲劳实验加载装置,并着重从实验设计及机理分析上进行细致深入的探索,揭示了Al_2O_3/LC_4复合材料冲击疲劳破坏的微观过程和机理。首先分别对SiC_P/LC_4、Al_2O_(3P)/LC_4 及基体 LC_4 进行了显微组织的观察与定量分析,并对其拉伸、三点弯曲破坏过程进行了在位观察,结合其断裂形貌的观察与分析,揭示出颗粒增强铝基复合材料断裂破坏的根本原因是颗粒的聚集及脆性相在晶界的严重偏聚。针对这一结论,给材料制备单位提出工艺改进意见。对工艺改进后制备的复合材料进行常规力学性能的测试,结果表明,其拉伸性能明显优于改进前制备的相应材料。为了进行冲击疲劳的实验研究,在分析步兵战车履带板实际受载特点的基础上,自行设计制备了冲击疲劳实验的加载装置。主要包括主体框架和测量系统,前者与小型振动系统配合使用可以实现冲击能量为 0.3J、冲击频率为 1Hz、冲击速度为 0.6m/s 的多次冲击实验;后者可以准确记录下任意时刻的冲击载荷波形及冲击疲劳载荷的循环数。为了考察颗粒与加载速率对复合材料疲劳机理的影响,实验研究了 Al_2O_3/LC_4 复合材料和 LC_4 纯基体材料在冲击疲劳和常规疲劳过程中裂纹的扩展过程及扩展速率。综合结果发现:与LC_4纯基体材料相比,Al_2O_3/LC_4复合材料疲劳裂纹扩展得更为迅速。复合材料中,由于颗粒的加入,两种疲劳方式下袭纹都发生严重偏转;裂纹经过颗粒时,多数是绕过,少数是切过颗粒;冲击疲劳裂纹扩展速率明显高于常规疲劳裂纹扩展速率。纯基体材料中,两种加载方式下,裂纹基本都以穿晶的方式扩展,裂纹常常表现为小锯齿状;冲击疲劳裂纹尖端的塑性变形程度比常规疲劳更大;冲击疲劳裂纹比常规疲劳裂纹更曲折,表现出多尺度的锯齿状(Zig-Zag)特征;冲击疲劳裂纹扩展速率高于常规疲劳的裂纹扩展速率。在基本实验的基础上,进一步对断口及裂纹扩展途径进行了微观观察和定量分析,最后综合全文的实验和统计结果,讨论了颗粒增强铝基复合材料的冲击疲劳机理。复合材料疲劳裂纹扩展速率的提高主要与裂纹的偏转有关,裂纹更倾向于沿着颗粒与基体的界面扩展;两种材料的疲劳裂纹扩展速率均随加载速率的增加而增加,呈现加载速率的反作用。加载方式的改变,一方面,由于冲击情况下载荷持续时间降低,使裂纹扩展速率降低;另一方面,加载速率的提高使得断裂韧性值降低,材料变脆,裂纹扩展速率升高。这两个方面相互影响,相互竞争,决定实际的裂纹扩展速率。两种材料中,不同加载速率下的疲劳裂纹扩展的微观机制基本一致,没有明显的本质区别。
Resumo:
Deformation twinning near a crack tip is observed in b.c.c. metal Mo based on molecular dynamics simulation at temperature T = 50 K and loading rate (K) over dot(II) = 0.0706 MPa m(1/2)/ps. The defor mation twinning is closely controlled by both the crystal geometry orientation and the stress distribution. The width of the deformation twin band is affected by the distance between the upper and lower crack surfaces. The twin plane and twin direction are (<1(1)over bar>2) and [(1) over bar 11], respectively. The initial crack extension occurs in the deformation twin region near the crack tip. The simulation shows that the extension direction of the crack is changed as the crack propagates over the twinning boundary.
Dislocations emission and crack extension at the atomistic crack tip in body-centered-cubic metal Mo
Resumo:
The behaviors of a crack in body-centered-cubic metal Mo under different loading modes were studied using the molecular dynamics method. Dislocation emission was observed near the crack tip in response to mode II loading with theta = 0 degrees in which theta is the inclination angle of the slip plane with respect to the crack plane, and two full dislocations were observed at the stress level of K-II = 1.17 MPa m(1/2) without any evidence of crack extension. Within the range of 0 degrees less than or equal to theta less than or equal to 45 degrees, crack extension was observed in response to mode I loading, and the effect of crystal orientation on the crack propagation was studied, The crack propagated along the [111] slip direction without any evidence of dislocations emission.
Resumo:
The Monte- Carlo method is used to simulate the surface fatigue crack growth rate for offshore structural steel E36-Z35, and to determine the distributions and relevance of the parameters in the Paris equation. By this method, the time and cost of fatigue crack propagation testing can be reduced. The application of the method is demonstrated by use of four sets of fatigue crack propagation data for offshore structural steel E36-Z35. A comparison of the test data with the theoretical prediction for surface crack growth rate shows the application of the simulation method to the fatigue crack propagation tests is successful.
Resumo:
Singular fields at the tip of an interface crack in anisotropic solids are reviewed with emphasis on establishing a framework to quantify fracture resistance under mixed mode conditions. The concepts of mode mixity and surface toughness are unified by using generalized interface traction components. The similarity between the anisotropic theory and existing isotropic theory is shown. Explicit formulae are given for misoriented orthotropic bimaterials with potential applications envisioned including composite laminates and semiconductor crystals. Competition between crack extension along the interface and kinking into the substrate is investigated using a boundary layer formulation. Several case studies reveal the role of anisotropy. An explicit complex variable representation for orthotropic materials and a solution to a dislocation interacting with a crack are presented in two self-contained Appendices.
Resumo:
On the basis of the well-known shear-lag analysis of fibre/matrix interface stresses and the assumption of identical axial strains in the fibre and matrix, a new model for predicting the energy release rate of interfacial fracture of the fibre pull-out test model is attempted. The expressions for stresses in the fibre, matrix and interface are derived. The formula for interfacial debonding energy release rate is given. Numerical calculations are conducted and the results obtained are compared with those of the existing models.
Resumo:
To investigate the low temperature fatigue crack propagation behavior of offshore structural steel A131 under random ice loading, three ice failure modes that are commonly present in the Bohai Gulf are simulated according to the vibration stress responses induced by real ice loading. The test data are processed by a universal software FCPUSL developed on the basis of the theory of fatigue crack propagation and statistics. The fundamental parameter controlling the fatigue crack propagation induced by random ice loading is determined to be the amplitude root mean square stress intensity factor K-arm. The test results are presented on the crack propagation diagram where the crack growth rate da/dN is described as the function of K-arm. It is evident that the ice failure modes have great influence on the fatigue crack propagation behavior of the steel in ice-induced vibration. However, some of the experimental phenomena and test results are hard to be physically explained at present. The work in this paper is an initial attempt to investigate the cause of collapse of offshore structures due to ice loading.
Resumo:
Based on the transmission electron micrographs of nacre, the existence of mineral bridges in the organic matrix interface is confirmed. It is proposed that the microarchitecture of nacre should be considered as a "brick-bridge-mortar" (BBM) arrangement rather than traditional "brick and mortar" (BM) one. Experiments and analyses indicate that the mineral bridges effectively affect the strength and toughness of the interfaces in nacre. Comparison with a laminated composite with BM structure, SiC/BN, shows that the pattern of the crack extension and the toughening mechanism of the two materials are different. This reveals that the mineral bridges play a key role in the toughening mechanisms of nacre, which gives a conceptual guidance in material synthesis.
Resumo:
The existing theories dealing with the evaluation of the absolute coagulation rate constant by turbidity measurement were experimentally tested for different particle-sized (radius = a) suspensions at incident wavelengths (lambda) ranging from near-infrared to ultraviolet light. When the size parameter alpha = 2 pi a/lambda > 3, the rate constant data from previous theories for fixed-sized particles show significant inconsistencies at different light wavelengths. We attribute this problem to the imperfection of these theories in describing the light scattering from doublets through their evaluation of the extinction cross section. The evaluations of the rate constants by all previous theories become untenable as the size parameter increases and therefore hampers the applicable range of the turbidity measurement. By using the T-matrix method, we present a robust solution for evaluating the extinction cross section of doublets formed in the aggregation. Our experiments show that this new approach is effective in extending the applicability range of the turbidity methodology and increasing measurement accuracy.
Resumo:
A mechanical model of a coating/laser pre-quenched steel substrate specimen with a crack oriented perpendicular to the interface between the coating and the hardened layer is developed to quantify the effects of the residual stress and hardness gradient on the crack driving force in terms of the J-integral. It is assumed that the crack tip is in the middle of the hardened layer of the pre-quenched steel substrate. Using a composite double cantilever beam model, analytical solutions can be derived, and these can be used to quantify the effects of the residual stress and the hardness gradient resulting from the pre-quenched steel substrate surface on the crack driving force. A numerical example is presented to investigate how the residual compressive stress, the coefficient linking microhardness and yield strength and the Young's modulus ratio of the hardened layer to the coating influence the crack driving force for a given crack length. (C) 2007 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
The axisymmetric problem of an elastic fiber perfectly bonded to a nonhomogeneous elastic matrix which contains an annular crack going through the interface into the fiber under axially symmetric shear stress is considered. The nature of the stress singularity is studied. It is shown that at the irregular point on the interface, whether the shear modulus is continuous or discontinuous the stresses are bounded. The problem is formulated in terms of a singular integral equation and can be solved by a regular method. The stress intensity factors and crack surface displacement are given.
Resumo:
High-order harmonics and single attosecond pulse generation by using an infrared laser pulse combined with attosecond pulse trains (APT) interacting with He+ have been investigated. We show that the ionization for different instant time intervals can be controlled by altering the time delay between the APT and the infrared pulse. Consequently, APT can be used as a tool to control the efficiency of high-order harmonics emitted at different times. By choosing appropriate APT and time delay, the driving pulse width for single attosecond pulse generation can be extended up to six optical cycles. (c) 2007 Optical Society of America.