17 resultados para symbolic solving

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

20.00% 20.00%

Publicador:

Resumo:

本文首先运用Symbolic Computation在半物理平面(x,)上计算了毛细重力波的六阶解,得到了波形与色散关系,低阶解与 Hogan 结果一致。

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Improving the resolution of the shock is one of the most important subjects in computational aerodynamics. In this paper the behaviour of the solutions near the shock is discussed and the reason of the oscillation production is investigated heuristically. According to the differential approximation of the difference scheme the so-called diffusion analogy equation and the diffusion analogy coefficient are defined. Four methods for improving the resolution of the shock are presented using the concept of diffusion analogy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The convective--diffusion equation is of primary importance in such fields as fluid dynamics and heat transfer hi the numerical methods solving the convective-diffusion equation, the finite volume method can use conveniently diversified grids (structured and unstructured grids) and is suitable for very complex geometry The disadvantage of FV methods compared to the finite difference method is that FV-methods of order higher than second are more difficult to develop in three-dimensional cases. The second-order central scheme (2cs) offers a good compromise among accuracy, simplicity and efficiency, however, it will produce oscillatory solutions when the grid Reynolds numbers are large and then very fine grids are required to obtain accurate solution. The simplest first-order upwind (IUW) scheme satisfies the convective boundedness criteria, however. Its numerical diffusion is large. The power-law scheme, QMCK and second-order upwind (2UW) schemes are also often used in some commercial codes. Their numerical accurate are roughly consistent with that of ZCS. Therefore, it is meaningful to offer higher-accurate three point FV scheme. In this paper, the numerical-value perturbational method suggested by Zhi Gao is used to develop an upwind and mixed FV scheme using any higher-order interpolation and second-order integration approximations, which is called perturbational finite volume (PFV) scheme. The PFV scheme uses the least nodes similar to the standard three-point schemes, namely, the number of the nodes needed equals to unity plus the face-number of the control volume. For instanc6, in the two-dimensional (2-D) case, only four nodes for the triangle grids and five nodes for the Cartesian grids are utilized, respectively. The PFV scheme is applied on a number of 1-D problems, 2~Dand 3-D flow model equations. Comparing with other standard three-point schemes, The PFV scheme has much smaller numerical diffusion than the first-order upwind (IUW) scheme, its numerical accuracy are also higher than the second-order central scheme (2CS), the power-law scheme (PLS), the QUICK scheme and the second-order upwind(ZUW) scheme.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, as an extension of minimum unsatisfied linear relations problem (MIN ULR), the minimum unsatisfied relations (MIN UR) problem is investigated. A triangle evolution algorithm with archiving and niche techniques is proposed for MIN UR problem. Different with algorithms in literature, it solves MIN problem directly, rather than transforming it into many sub-problems. The proposed algorithm is also applicable for the special case of MIN UR, in which it involves some mandatory relations. Numerical results show that the algorithm is effective for MIN UR problem and it outperforms Sadegh's algorithm in sense of the resulted minimum inconsistency number, even though the test problems are linear.