171 resultados para strong shift equivalence
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
The beating patterns in the Shubnikov-de Haas oscillatory magnetoresistance originating from zero-field spin splitting of two-dimensional electron gases (2DEGs) in In0.52Al0.48As/InxGa1-xAs/In0.52Al0.48As quantum wells with silicon delta doped on the upper barrier layer have been investigated by means of magnetotransport measurements before and after illumination. Contrary to the expectation, after each illumination, the beating nodes induced by the zero-field spin-splitting effect shift to lower and lower magnetic field due to the decrease in the zero-field spin-splitting energy of the 2DEGs. The anomalous phenomenon of the shift of the beating nodes and the decrease in spin-orbit coupling constants after illumination cannot be explained by utilizing the previous linear Rashba model. It is suggested that the decrease in the zero-field spin-splitting energy and the spin-orbit coupling constant arise from the nonlinear Rashba spin splitting.
Resumo:
Multiphoton ionization of NO via intermediate Rydberg states with ultra-short laser pulses is investigated with time-resolved photoelectron spectroscopy in combination with fermosecond pump-probe technology. The Rydberg states of NO, which are characterized by obvious ac-Stark shift in ultra-strong laser field, can be tuned in resonance to ionize NO molecule at one's will with identical laser pulses, i.e., one can 'select' resonance path to ionization. The results shown in this Letter demonstrate that the states holding notable dynamic Stark shift provide us another dimension to chemical control with strong laser field. (C) 2003 Elsevier Science B.V. All rights reserved.
Resumo:
Photoluminescence measurements have been performed in Si-rich a-SiNx:H (x less than or equal to 1.3) alloys prepared by glow discharge. It is observed that the blue shift of the peak of room temperature luminescence spectrum with increasing N content parallels increasing intensity. Two distinct luminescence mechanisms are proposed in a-SiNx:H with the threshold near x = 0.8. For low x, the samples show typical luminescence properties of a-Si:H, while for high x, the normalized luminescence bands are independent of temperature. Combining percolation theory, the luminescence origins are discussed on the basis of Brodsky's quantum well model. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
From the angle of energy transformation an equation was obtained for the brittle transition in polymer blends. The effects of interparticle distance, temperature and strain rate on the brittle-tough transition in polymer blends were characterized by this equation. The calculations show that, for this transition: (1) increasing temperature and decreasing interparticle distance are equivalent and the shift factor increases with increasing temperature; (2) decreasing strain rate and decreasing interparticle distance have equivalent effects on the transition; (3) the strain rate must be optimum in order to find the brittle-tough transition phenomena for a given temperature region. (C) 1998 Published by Elsevier Science Ltd. All rights reserved.
Resumo:
The growth of highly lattice-mismatched InAs0.3Sb0.7 films on (100) GaAs Substrates by magnetron Sputtering has been investigated and even epitaxial lnAs(0.3)Sb(0.7) films have been successfully obtained. A strong effect of the growth conditions on the film structure was observed, revealing that there was a growth mechanism transition from three-dimensional nucleation growth to epitaxial layer-by-layer growth mode when increasing the substrate temperature. A qualitative explanation for that transition was proposed and the critical conditions for the epitaxial layer-by-layer growth mode were also discussed.
Resumo:
An optical diagnostic system consisting of the Mach-Zehnder interferometer with the phase shift device and an image processor has been developed for the study of the kinetics of the crystal growing process. The dissolution and crystallization process of NaClO3 crystal has been investigated. The concentration distributions around a growing and dissolving crystal have been obtained by using phase-shift of four-steps theory for the interpretation of the interferograms. The convection (a plume flow) has been visualized and analyzed in the process of the crystal growth. The experiment demonstrates that the buoyancy convection dominates the growth rate of the crystal growing face on the ground-based experiment.
Resumo:
There are seven strong earthquakes with M >= 6.5 that occurred in southern California during the period from 1980 to 2005. In this paper, these earthquakes were studied by the LURR (Load/Unload Response Ratio) method and the State Vector method to detect if there are anomalies before them. The results show that LURR anomalies appeared before 6 earthquakes out of 7 and State Vector anomalies appeared before all 7 earthquakes. For the LURR method, the interval between maximum LURR value and the forthcoming earthquake is 1 to 19 months, and the dominant mean interval is about 10.7 months. For the State Vector method, the interval between the maximum modulus of increment State Vector and the forthcoming earthquake is from 3 to 27 months, but the dominant mean interval between the occurrence time of the maximum State Vector anomaly and the forthcoming earthquake is about 4.7 months. The results also show that the minimum valid space window scale for the LURR and the State Vector is a circle with a radius of 100 km and a square of 3 degrees 3 degrees, respectively. These results imply that the State Vector method is more effective for short-term earthquake prediction than the LURR method, however the LURR method is more effective for location prediction than the State Vector method.
Resumo:
We report the direct synthesis of strong, highly conducting, and transparent single-walled carbon nanotube (SWNT) films. Systematically, tests reveal that the directly synthesized films have superior electrical and mechanical properties compared with the films made from a solution-based filtration process: the electrical conductivity is over 2000 S/cm and the strength can reach 360 MPa. These values are both enhanced by more than 1 order. We attribute these intriguing properties to the good and long interbundle connections. Moreover, by the help of an extrapolated Weibull theory, we verify the feasibility of reducing the interbundle slip by utilizing the long-range intertube friction and estimate the ultimate strength of macroscale SWNTs without binding agent.
Resumo:
The perturbation theory is applied further to the discussion of the equilibrium properties of a sunspot-like magnetic field with a strong twisted component. The basic state reduces to the usual one discussed extensively for the axisymmetric magnetostatic equilibrium with twisted component of magnetic field, and the perturbed state is described by two coupled equations. As the magnetic force-line is twisted, there is a magnetic tension in the azimuthal direction. In this case, the perturbed total pressure is no longer independent of the azimuthal variable θ, and the magnetic field in the dark penumbal fibril may be either stronger or weaker relatively.
Resumo:
At the shock velocity range of 7~9km/s, the variations of electron density behind strong normal shock waves are measured in a low-density shock tube by using the Langmuir electrostatic probe technique. The electron temperature, calculated based on Park’s three-temperature model, is used in interpreting the probe current data. The peak electron densities determined in the present experiment are shown to be in a good agreement with those predicted by Lin’s calculation. The experimentally obtained ratios of the characteristic ionization distance to the mean free path of freestream ahead of the shock wave are found to be in a good agreement with the existing experiments and Park’s calculation.
Resumo:
In the present paper the measured values of vibrational temperature behind strong shock waves are compared with theoretical ones. The histories of vibrational temperature behind strong shock waves in a shock tube were measured using two monochromators. The test gas was pure nitrogen at 100-300Pa, and the speeds of shock waves were 5.0-6.0km/s. The electronic temperature of N-2(+) was also approximately determined from experiment and compared with the experimental vibrational temperature. The results show that the presented calculational method is effective, and the electronic energy of N2+ is excited much faster than its vibrational energy. One Langmuir probe was used to determine the effective time of region 2. The influence of viscosity in the shock tube is also analyzed.
Resumo:
The evaluation of the interfacial adhesion of coating system has always been a rough task. In this paper, a special testing method of cross-sectional indentation is applied on a model coating system, i.e. electroplated chromium on a steel substrate which is generally regarded as an example of materials pair with strong adhesion. Based on fractography analysis with SEM and interfacial stress simulation with FEM, it is found that interfacial shear stress may induce coating spalling. More interestingly, spalling location is sensitive to substrate pretreatment process. This shows the feasibility of cross-sectional indentation to distinguish interfacial strength at a high level.
Resumo:
Low strain hardening has hitherto been considered an intrinsic behavior for most nanocrystalline (NC) metals, due to their perceived inability to accumulate dislocations. In this Letter, we show strong strain hardening in NC nickel with a grain size of 20 nm under large plastic strains. Contrary to common belief, we have observed significant dislocation accumulation in the grain interior. This is enabled primarily by Lomer-Cottrell locks, which pin the lock-forming dislocations and obstruct islocation. motion. These observations may help with developing strong and ductile NC metals and alloys.
Resumo:
Composite materials with interpenetrating network structures usually exhibit unexpected merit due to the cooperative interaction. Locally resonant phononic crystals (LRPC) exhibit excellent sound attenuation performance based on a periodical arrangement of sound wave scatters. Inspired by the interpenetrating network structure and the LRPC concept, we develop a locally network anechoic coating (LNAC) that can achieve a wide band of underwater strong acoustic absorption. The experimental results show that the LNAC possesses an excellent underwater acoustic absorbing capacity in a wide frequency range. Moreover, in order to investigate the impact of the interpenetrating network structure, we fabricate a faultage structure sample and the network is disconnected by hard polyurethane (PU). The experimental comparison between the LNAC and the faultage structure sample shows that the interpenetrating network structure of the LNAC plays an important role in achieving a wide band strong acoustic absorption.
Resumo:
本文研究了飞秒激光脉冲在水中的传输情况.通过改变不同的激光输入功率进行模拟,我们发现从输入功率略高于到远远高于发生自聚焦的临界功率,分别是群速度色散和多光子电离多光子吸收阻止了自聚焦导致的脉冲塌陷,当多光子电离和多光子吸收主导传输时,脉冲能被压缩到几个光学周期.在频域,多光子电离能引起很强的蓝移,而多光子吸收能对这种蓝移起到抑制作用。