280 resultados para sperm membrane

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Glycerol and dimethyl sulfoxide (DMSO) are widely used as penetrating cryoprotectants in the freezing of sperm, and various concentrations are applied in different species and laboratories. The present study aimed to examine the effect of these two cryoprotectants at different concentrations (2%, 5%, 10%, and 15% glycerol or DMSO) on rhesus monkey sperm cryopreservation. The results showed that the highest recovery of post-thaw sperm motility, and plasma membrane and acrosome integrity was achieved when the sperm was frozen with 5% glycerol. Spermatozoa cryopreserved with 15% DMSO showed the lowest post-thaw sperm motility, and spermatozoa cryopreserved with 15% glycerol and 15% DMSO showed the lowest plasma membrane integrity among the eight groups. The results achieved with 5% glycerol were significantly better for all parameters than those obtained with 5% DMSO. The functional cryosurvival of sperm frozen with 5% glycerol was further assessed by in vitro fertilization (IVF). Overall, 85.7% of the oocytes were successfully fertilized, and 51.4% and 5.7% of the resulting zygotes developed into morulae and blastocysts, respectively. The results indicate that the type and concentration of the penetrating cryoprotectant used can greatly affect the survival of rhesus monkey sperm after it is frozen and thawed. The suitable glycerol level for rhesus monkey sperm freezing is 5%, and DMSO is not suitable for rhesus monkey sperm cryopreservation. (C) 2004 Wiley-Liss, Inc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effects of three amino acids (proline, glutamine, and glycine) added to the freezing medium Tes-Tris-egg yolk (TTE) for cryopreservation of cynomolgus monkey (Macaca fascicularis) spermatozoa were studied. This is the first report on the effects of amino acids on nonhuman primate sperm cryopreservation. The addition of 5 mM proline, 10 mM glutamine, and 10 or 20 mM glycine each significantly improved post-thaw sperm motility and membrane and acrosome integrity compared with the control (TTE alone). However, a significant decrease in motility and membrane/acrosome integrity was observed when amino acid concentrations increased to 60 mM for proline and glutamine, and 80 mM for glycine. The results suggest that adding a limited amount of amino acids to the freezing media is beneficial for freezing cynomolgus monkey sperm.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ejaculated spermatozoa from cynomolgus monkeys and rhesus monkeys were frozen in straws with six different extenders (TTE, DM, mDM, LG-DM, G-DM, and TCG) containing glycerol. Sperm motility and head membrane and acrosomal integrity were evaluated after fr

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A simple and convenient protocol for the cryopreservation of the flounder (Paralichthys olivaceus) sperm was established for "on the spot" cryopreservation of large quantities of semen. The use of three cryoprotectants, dimethyl sulphoxide (DMSO), glycerol (Gly) and methanol was tested in the method. The percentage of motile sperm present in semen after it had been frozen and thawed in the presence of DMSO, Gly or methanol was 60.5 +/- 3.6, 79.17 +/- 4.5 and 13.25 +/- 4.7%, respectively. The fertilization rates of this sperm were 67.06 +/- 15.1, 76.20 +/- 10.0 and 44.93 +/- 22.6%, while the hatching rates of eggs fertilized with this sperm were 37.40 +/- 8.3, 48.18 +/- 25.7 and 23.35 +/- 10.8%, respectively. It was found that Gly and DMSO were better cryoprotectants than methanol, with Gly giving the best overall results. Under scanning electron microscopy, it could be seen that while the majority of the frozen-thawed sperm remained morphologically normal, some exhibited lost or dilated mitochondria, swollen mid-pieces, broken tails, or damaged cell membrane, which probably caused the decrease in motility and fertility of the frozen-thawed sperm. (C) 2003 Elsevier Science Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this study, at proper dosage of ultraviolet (UV) irradiation (180 sec: 36,000 erg/mm(2)), sperm chromosomes of left-eyed flounder, Paralichthys olivaceus, were inactivated, while spermatozoa maintained ability to move and inseminate eggs. Gynogenetic haploids were detected by morphological observation, chromosome counting, and flow cytometer analysis. The ultrastructure of treated sperm was observed under scanning electronic microscope (SEM) and transmission electronic microscope (TEM). The results showed that after being irradiated at lower dosage of irradiation (0-180 sec: 0-36,000 erg/mm(2)), the surface structure of spermatozoa was not affected by UV irradiation, while the inner structures including membrane system and karyoplasm denseness of treated spermatozoa were little changed. However, obvious changes were observed in their membrane system, mitochondria, and nucleus if the dosage of irradiation increased to 240 sec: 48,000 erg/mm(2) or 300 sec: 60,000 erg/mm(2). The sperm survival rates did not change at the lower dosages of the UV irradiation (0-180 sec: 0-36,000 erg/mm(2)) but decreased as the irradiation dosage increased. The motility of treated sperm was lower than that of control group in general but did not change with UV irradiation dosage increasing at the certain range of 0-300 sec: 0-60,000 erg/mm(2).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The objectives were to assess motility, fertilizing capacity, structural integrity, and mitochondrial function in fresh versus frozen-thawed (15% DMSO was used as a cryoprotectant) sperm from red seabrearn (Pagrus major). Mean (+/- S.D.) rates of motility, fertilization and hatching of frozen-thawed sperm were 81.0 +/- 5.4, 92.8 +/- 1.9, and 91.8 +/- 5.2%, respectively; for fresh sperm, they were 87.5 +/- 7.7, 95.8 +/- 2.4, and 93.8 +/- 4.2%. Although motility was lower in frozen-thawed versus fresh sperm (P < 0.05), there was no effect (P > 0.05) of cryopreservation on fertilization or hatching. Based on scanning and transmission electron microscopy, 77.8 +/- 5.6% of fresh sperm had normal morphology, whereas for frozen-thawed sperm, 63.0 +/- 7.2% had normal morphology, 20.6 +/- 3.1% were slightly damaged (e.g. swelling or rupture of head, mid-piece and tail region as well as mitochondria), and 16.4 +/- 4.2% were severely damaged. Sperm were stained with propidium iodide and Rhodamine 123 to assess plasma membrane integrity and mitochondrial function, respectively, and examined with flow cytometry. For fresh sperm, 83.9% had an intact membrane and functional mitochondria, whereas for frozen-thawed sperm, 74.8% had an intact membrane and functional mitochondria, 12.7% had a damaged membrane, 9.9% had nonfunctional mitochondria, and 2.6% had both a damaged membrane and nonfunctional mitochondria. In conclusion, ultrastructure and flow cytometry were valuable for assessment of frozen-thawed sperm quality; cryopreservation damaged the sperm but fertilizing ability was not significantly decreased. (c) 2007 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

More and more evidences come out to support that the functionality of adhesion molecules are influenced by the surface microtopology of cell carrier or substrate. Adhesive molecules usually express on the microvilli of a cell, providing a well-defined spatial configuration to mediate the adhesions to the counterpart molecules on the apposed surface.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Adhesion forces of Dipalmitoylphosphatidylcholine ( DPPC) membrane in the gel phase are investigated by molecular dynamics ( MD) simulation. In the simulations, individual DPPC molecules are pulled out of DPPC membranes with different rates and we get the maximum adhesion forces of DPPC membrane. We find that the maximum adhesion forces increase with pull rate, from about 400 to 700 pN when pull rates are from 0.001 to 0.03 nm/ps. We analyze the relationship between pull rate and adhesion forces of different origins using Brownian dynamics and notice that viscosity of solvent plays an important role in adhesion forces. Then we simulate the motion of a single DPPC molecule in solvent and it elucidates that the maximum drag force is almost linear with respect to the pull rate. We use Stokes' relation to describe the motion of a single DPPC molecule and deduce the effective length of a DPPC molecule. Conformational analyses indicate that the free energy variation of a DPPC molecule inside and outside of the DPPC membrane is an essential part of adhesion energy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Poly(dimethylsiloxane) (PDMS) has been widely used in lab-on-a-chip and micro- total analysis systems (mu-TAS), thus wetting and electrowetting behaviors of PDMS are of great importance in these devices. PDMS is a kind of soft polymer material, so the elastic deformation of PDMS membrane by a droplet cannot be neglected due to the vertical component of the interfacial tension between the liquid and vapor, and this vertical component of liquid-vapor surface tension is also balanced by the stress distribution within the PDMS membrane. Such elastic deformation and stress distribution not only affect the exact measurement of contact angle, but also have influence on the micro-fluidic behavior of the devices. Using ANSYS code, we simulated numerically the elastic deformation and stress distribution of PDMS membrane on a rigid substrate due to the liquid-vapor surface tension. It is found that the vertical elastic deformation of the PDMS membrane is on the order of several tens of nanometers due to the application of a droplet with a diameter of 2.31 mm, which is no longer negligible for lab-on-a-chip and mu-TAS. The vertical elastic deformation increases with the thickness of the PDMS membrane, and there exists a saturated membrane thickness, regarded as a semi-infinite membrane thickness, and the vertical elastic deformation reaches a limiting value when the membrane thickness is equal to or thicker than such saturated thickness. (C) Koninklijke Brill NV, Leiden, 2008.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Polydimethylsiloxane (PDMS) has been widely used as a base material for bio-MEMS/NEMS devices. It is difficult for PDMS to transfer and spread aqueous solution as a kind of highly hydrophobic material. Therefore, surface modification is necessary for PDMS to make it hydrophilic. In this paper, a method of hydrophilization of PDMS surface is proposed. Gold is sputtered to the PDMS substrate by sputter coater in different average thicknesses. Relationship between the average thickness of gold on the PDMS substrate and the contact angle of the surface was studied. It was found that even gold of average thickness less than 1 nm can result in about 25 degrees change of contact angle. AFM is also used to get topographic information of PDMS surface coated with gold. Three cases are classified with different amount of Au: (1) Heterogeneous zone; (2) Transition zone; (3) Film zone. For heterogeneous zone, a simple model about heterogeneous phase wetting is put forward to interpret this phenomenon.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Detailed investigations on the microstructure and the mechanical properties of the wing membrane of the dragonfly are carried out. It is found that in the direction of the thickness the membrane was divided into three layers rather than a single entity as traditionally considered, and on the surfaces the membrane displays a random distribution rough microstructure that is composed of numerous nanometer scale columns coated by the cuticle wax secreted. The characteristics of the surface structure are measured and described. The mechanical properties of the membranes taken separately from the wings of live and dead dragonflies are investigated by the nanoindentation technique. The Young's moduli obtained here are approximately two times greater than the previous result, and the reasons that yield the difference are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Detailed investigations on the microstructure and the mechanical properties of the wing membrane of the dragonfly were carried out. It was found that in the direction of the thickness the membrane was divided into three layers rather than as traditionally considered as a single entity, and on the surfaces the membrane displayed a random distribution rough microstructure that was composed of numerous nanometer scale columns coated by the cuticle wax secreted. The characteristics of the surfaces were accurately measured and a statistical radial distribution function of the columns was presented to describe the structural properties of the surfaces. Based on the surface microstructure, the mechanical properties of the membranes taken separately from the wings of living and dead dragonflies were investigated by the nanoindentation technique. The Young's moduli obtained here are approximately two times greater than the previous result, and the reasons that yield the difference are discussed. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Adhesion forces of Dipalmitoylphosphatidylcholine ( DPPC) membrane in the gel phase are investigated by molecular dynamics ( MD) simulation. In the simulations, individual DPPC molecules are pulled out of DPPC membranes with different rates and we get the maximum adhesion forces of DPPC membrane. We find that the maximum adhesion forces increase with pull rate, from about 400 to 700 pN when pull rates are from 0.001 to 0.03 nm/ps. We analyze the relationship between pull rate and adhesion forces of different origins using Brownian dynamics and notice that viscosity of solvent plays an important role in adhesion forces. Then we simulate the motion of a single DPPC molecule in solvent and it elucidates that the maximum drag force is almost linear with respect to the pull rate. We use Stokes' relation to describe the motion of a single DPPC molecule and deduce the effective length of a DPPC molecule. Conformational analyses indicate that the free energy variation of a DPPC molecule inside and outside of the DPPC membrane is an essential part of adhesion energy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we studied the role of vertical component Of Surface tension of a water droplet on the deformation of membranes and microcantilevers (MCLs) widely used in lab-on-a-chip and micro-and nano-electromechanical system (MEMS/NEMS). Firstly, a membrane made of a rubber-like material, poly(dimethylsiloxane) (PDMS), was considered. The deformation was investigated using the Mooney-Rivlin (MR) model and the linear elastic constitutive relation, respectively. By comparison between the numerical solutions with two different models, we found that the simple linear elastic model is accurate enough to describe such kind of problem, which would be quite convenient for engineering applications. Furthermore, based on small-deflection beam theory, the effect of a liquid droplet on the deflection of a MCL was also studied. The free-end deflection of the MCL was investigated by considering different cases like a cylindrical droplet, a spherical droplet centered on the MCL and a spherical droplet arbitrarily positioned on the MCL. Numerical simulations demonstrated that the deflection might not be neglected, and showed good agreement with our theoretical analyses. (C) 2008 Elsevier Inc. All rights reserved.