67 resultados para spatial variations in sulfie generation

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Investigations of protozoa were carried out during four surveys of East Dongting Lake, China. A total of 160 protozoan species belonging to 71 genera was identified, of which 53 were flagellates, 37 sarcodines, and 70 ciliates. Among them, Peritrichida (32.6% of frequency), Arcellinida (16.2%), Volvocales (13.61/6), Peridiniales (13.1%), and Chrysomonadales (9.1%) were the main groups and contributed to 84.5% of the overall species. Ciliates were mainly composed of sessile species and small species. The total protozoan abundance varied from 2,400 cells L-1 to 20,250 cells L-1. The highest protozoan abundance occurred in spring; the lowest number was in autumn. The highest abundance of ciliates occurred in spring and winter, whereas flagellates developed the highest abundance in,summer and autumn. Pearson correlation analysis and linear regressions indicated that chlorophyll a and water velocity were the main factors affecting ternporal and spatial variations of the protozoan abundance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Monthly sediment and interstitial water samples were collected in a shallow Chinese freshwater lake (Lake Donghu) from three areas to determine if alkaline phosphatase activity (APA) plays an important role in phosphorus cycling in sediment. The seasonal variability in the kinetics of APA and other relevant parameters were investigated from 1995-1996. The phosphatase hydrolyzable phosphorus (PHP) fluctuated seasonally in interstitial water, peaking in the spring. A synchronous pattern was observed in chlorophyll a contents in surface water in general. The orthophosphate (o-P) concentrations in the interstitial water increased during the spring. An expected negative relationship between PHP and V-max of APA is not evident in interstitial water. The most striking feature of the two variables is their co-occurring, which can be explained in terms of an induction mechanism. It is argued that phosphatase activity mainly contributes to the driving force of o-P regeneration from PHP in interstitial water, supporting the development of phytoplankton biomass in spring. The V-max values in sediment increased during the summer, in Conjunction with lower K-m values in interstitial water that suggest a higher affinity for the substrate. The accumulation of organic matter in the sediment could be traced back to the breakdown of the algal spring bloom, which may stimulate APA with higher kinetic efficiency, by a combination of the higher V-max in sediments plus lower K-m values in interstitial water, in Summer. In summary, a focus On phosphatase and its substrate in annual scale may provide a useful framework for the development of novel P cycling, possible explanations for the absence of a clear relationship between PHP and APA were PHP released from the sediment which induced APA, and the presence of kinetically higher APA both in sediment and interstitial water which permitted summer mineralization of organic matter derived from the spring bloom to occur. The study highlighted the need for distinguishing functionally distinct extracellular enzymes between the sediment and interstitial water of lakes. (C) 2002 Elsevier Science Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The results of field observation carried out in May 2003 were used to examine pH and total alkalinity behaviors in the Changjiang Estuary. It was showed that PH and total alkalinity took on clear spatial variations in values with the minima in the low salinity region. Like salinity, transect distributions of PH and total alkalinity (TA) in a downriver direction had a sharp gradient each. These gradients appeared in such a sequence that the TA gradient was earlier than salinity and PH gradients, and the salinity gradient was earlier than the PH gradient. These distribution characteristics seemed to be strongly influenced by the mixing process of freshwater and seawater, for both PH and total alkalinity had significant linear relationships with salinity and temperature. For PH, phytoplankton activities also had a significant impact upon its spatial distribution. During a period of 48 h, PH and total alkalinity changed within wide ranges for every layer of the two anchor stations, namely, Stas 13 and 20, which were located at the mixed water mass and seawater mass, respectively. For both Stas 13 and 20, PH and TA fluctuation of every layer could be very wide during a 4 h period. As a whole, the data of the two anchor stations showed that neither variations in salinity and temperature nor phytoplankton activities were the main factors strongly influencing the total alkalinity temporal variability on a small time scale. The data of Sta. 20 implied that both salinity variation and phytoplankton activities had a significant influence on PH temporal variability, but the same conclusion could not be drawn from the data of Sta. 13.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Samples from stone surfaces were collected in pools within four unpolluted hillstreams (two shaded and two unshaded) in monsoonal Hong Kong (lat. 23 degrees N) to elucidate the extent of spatial (within and among streams) and temporal (seasonal) variations in algal biomass and assemblage composition. Sampling continued for over 12 months, incorporating the dry season when streams were at baseflow, and the wet season when spates were frequent. We anticipated that algal biomass would be lower in shaded streams and during the wet season, with associated seasonal differences in assemblage composition or relative abundance of different growth forms (e. g. erect versus prostrate). Benthic chlorophyll a (a proxy for algal biomass) varied among streams from an annual mean of 11.0-22.3 mg m(-2). Dry-season standing stocks were 18% higher than during the wet season when spate-induced disturbance reduced algal standing stocks. Algal biomass varied significantly at the stream scale, but not at the pool scale, and was lower in unshaded streams, where standing stocks may have been limited by high densities of algivorous balitorid loaches (mainly Pseudogastromyzon myersi). An overriding effect of grazers on algal biomass could also have reduced variations resulting from spate-induced disturbance. Significant differences in assemblage composition among streams, which were dominated by diatoms and cyanobacteria (totally 82 taxa) were not systematically related to shading conditions. Seasonal variations in algal assemblages were statistically significant but rather minor, and did not involve major shifts in composition or growth form caused by spate-induced disturbance. The abundance of filamentous cyanobacteria in all the streams may have been due to 'gardening' by balitorid loaches that removed erect or stalked diatoms and favoured cyanobacteria that persist through basal regeneration of filaments. This explanation requires validation through manipulative experiments.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Temporal and spatial variations of the phytoplankton assemblage in Lake Chaohu, a large shallow eutrophic lake in China, were studied from September 2002 to August 2003. A total of 191 phytoplankton species was identified, among which Chlorophytes (101) ranked the first, followed by Cyanophytes (46) and Bacillariophytes (28). On average over the entire lake, the maximum total algal biomass appeared in June (19.70 mg/L) with a minimum (5.05 mg/ L) in November. In terms of annual mean biomass, cyanobacteria contributed 45.43% to total algal biomass, followed by Chlorophytes (27.14%), and Bacillariophytes (20.6%). When nitrate (NO3-N) and ammonium (NH4-N) concentrations dropped in spring, fixing-nitrogen cyanobacterium (Anabaena) developed quickly and ranked the first in terms of biomass in summer. It is likely that dominance of zooplanktivorous fish and small crustacean zooplankton favored the development of the inedible filamentous or colony forming cyanobacteria. The persistent dominance of cyanobacteria throughout all seasons may indicate a new tendency of the response of phytoplankton to eutrophication in Lake Chaohu.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Geographic and vertical variations of size-fractionated (0.2-1 mu m, 1-10 mu m, and >10 mu m) Chlorophyll a (Chl.a) concentration, cyanobacteria abundance and heterotrophic bacteria abundance were investigated at 13 stations from 4 degrees S, 160 degrees W to 30 degrees N, 140 degrees E in November 1993. The results indicated a geographic distribution pattern of these parameters with instances of high values occurring in the equatorial region and offshore areas, and with instance of low values occurring in the oligotrophic regions where nutrients were almost undetectable. Cyanobacteria showed the highest geographic variation (ranging from 27x10(3) to 16,582x10(3) cell l(-1)), followed by Chl.a (ranging from 0.048 to 0.178 mu g l(-1)), and heterotrophic bacteria (ranging from 2.84x10(3) to 6.50 x 10(5) cell l(-1)). Positive correlations were observed between nutrients and Chl.a abundance. Correspondences of cyanobacteria and heterotrophic bacteria abundances to nutrients were less significant than that of Chl.a. The total Chl.a was accounted for 1.0-30.9%, 35.9-53.7%, and 28.1-57.3% by the >10 mu m, 1-10 mu m and 0.2-1 mu m fractions respectively. Correlation between size-fractionated Chl.a and nutrients suggest that the larger the cell size, the more nutrient-dependent growth and production of the organism. The ratio of pheophytin to chlorophyll implys that more than half of the > 10 mu m and about one third of the 1-10 mu m pigment-containing particles in the oligotrophic region were non-living fragments, while most of the 1-10 mu m fraction was living cells. In the depth profiles, cyanobacteria were distributed mainly in the surface layer, whereas heterotrophic bacteria were abundant from surface to below the euphotic zone. Chl.a peaked at the surface layer (0-20 m) in the equatorial area and at the nitracline (75-100 m) in the oligotrophic regions. Cyanobacteria were not the principle component of the picoplankton. The carbon biomass ratio of heterotroph to phytoplankton was greater than 1 in the eutrophic area and lower than 1 in oligotrophic waters.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Temporal and spatial changes in delta(13) C and delta 15 N of particulate organic matter (POM) and Hemiculter leucisculus were studied in the Yangtze River of China. Isotopic signatures of POM showed seasonal variations, which was assumed to be associated with allochthonous organic input and autochthonous phytoplankton growth. delta C-13 of H. leucisculus was 1.1 % higher than that of POM, which suggested that the food source of H. leucisculus was mostly from the POM. A mass balance model indicated the trophic position of H. leucisculus in the food web of Yangtze River was estimated to be 2.0 - 2.1, indicating that this fish mainly feeds on planktonic organic matter, which agreed with previous gut content analysis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The spatial distribution of stage-specific abundance and reproduction of the copepod Paracalanus parvus were studied from October 2005 to September 2006 in the Jiaozhou Bay. This copepod occurred continuously in this bay throughout the year. The species reached the lowest abundance in April and peaked in June. From October to December, distribution center mainly occurred in offshore water and at the mouth of the bay. In winter, early copepodites and adults gradually decreased and till February, most of the population was only comprised of CIV-CV stages. Overwintering copepodites matured in March and males tended to mature before female. From May to September, each stage occurred in the population and gradually reached high abundance. Temperature and chlorophyll a (Chl-a) concentration in the three stations can't clearly explain the seasonal variation in stage-specific abundance, so we surmised the important effect of the Yellow Sea. Egg production rate (EPR) reached its lowest in winter and peaked in June at 60.8 eggs female(-1) day(-1) in nearshore water. In the warming period, EPR in nearshore water was statistically higher and EPR > 10 eggs female(-1) day(-1) lasted longer than that in offshore water, showing the importance of nearshore water for recruitment of R parvus. Our study showed that EPR was positively related to temperature and total chlorophyll a in offshore water and mouth of the bay. In nearshore water, the relationships between EPR and temperature and Chl-a in three size fractions were not the same as those in offshore water, suggesting complicated ecosystem in such a eutrophic area in warming period. (C) 2008 Elsevier Ltd. All rights reserved.