138 resultados para solution and solubility
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
By means of the matched asymptotic expansion method with one-time scale analysis we have shown that the inviscid geostrophic vortex solution represents our leading solution away from the vortex. Near the vortex there is a viscous core structure, with the length scale O(a). In the core the viscous stresses (or turbulent stresses) are important, the variations of the velocity and the equivalent height are finite and dependent of time. It also has been shown that the leading inner solutions of the core structure are the same for two different time scales of S/(ghoo)1/2 and S/a (ghoo)1/2. Within the accuracy of O(a) the velocity of a geostrophic vortex center is equal to the velocity of the local background flow, where the vortex is located, in the absence of the vortex. Some numerical examples demonstrate the contributions of these results.
Resumo:
Self-assembling of novel biodegradable ABC-type triblock copolymer poly(ethylene glycol)-poly(L-lactide)-poly(L-glutamic acid) (PEG-PLLA-PLGA) is studied. In aqueous media, it self-assembles into a spherical micelle with the hydrophobic PLLA segment in the core and the two hydrophilic segments PEG and PLGA in the shell. With the lengths of PEG and PLLA blocks fixed, the diameter of the micelles depends on the length of the PLGA block and on the volume ratio of H2O/dimethylformamide (DMF) in the media. When the PLGA block is long enough, morphology of the self-assembly is pH-dependent. It assembles into the spherical micelle in aqueous media at pH 4.5 and into the connected rod at or below pH 3.2. The critical micelle concentration (cmc) of the copolymer changes accordingly with decreasing solution pH. Both aggregation states can convert to each other at the proper pH value. This reversibility is ascribed to the dissociation and neutralization of the COOH groups in the LGA residues. When the PLGA block is short compared to the PEG or PLLA block, it assembles only into the spherical micelle at various pH values.
Resumo:
Monodisperse oligo[(1,4-phenyleneethynylene)-alt-(2,5-thiopheneethynylene)]s, new candidates for molecular wires, were rapidly synthesized via an iterative divergent/convergent doubling strategy in solution as well as on Merrifield's resin.
Resumo:
Incubated solutions containing glutathione (GSH) and alpha- or beta-cyclodextrins (CDs) were analyzed using electrospray mass spectrometry and tandem mass spectrometry, The results suggest that both CDs can catalyze oxidation of GSH to the oxidized glutathione (GSSG). The collision-induced dissociation (CID) of the 1:1 and 1:2 (CD/GSH) and 1:1 (CD/GSSG) complexes reveals the strong interactions of the CDs with the peptides tested. The 1:2 (CD/GSH) complex is considered to be the oxidation reaction intermediate, which indicates that the three-dimensional structure of the complexed two GSHs in CD complexes Is different from that of the proton-bound GSH dimer, The oxidation product, GSSG, Is also observed in the CID spectrum of the singly charged 1:1 (CD/GSH) complex, suggesting that a complex ion-complex ion reaction occurs by forming a doubly charged complex dimer, as a result of the ability of ion trap to accumulate and activate ions. The observations indicate that ion trap mass spectrometry can be used to explore cyclodextrin-catalyzed reactions and to carry out complex gaseous chemistry research. Copyright (C) 1999 John Wiley & Sons, Ltd.
Resumo:
The relationship between structure, ionic radius and electronegativity and solubility of the various rare-earth elements in Mg was studied. It is found that light RE(La-Sm, Eu, Yb) have more complicated phase relation with Mg but the heavy RE(Gd-Lu, Sc) have the similar crystal structure with magnesium. Also it is found that the less electronegativity difference between Mg and RE is, the more solubility limit of RE in Mg is. The fact of the RE solubility decreased in magnesium with lowering temperature suggests that there is a possibility of Mg supersaturated solid solution formation and it will decomposition during aging. According to the rule, an megnesium alloy with higher strength feature was developed. Their mechanical properties are UTS 347MPa, YTS 290MPa and elongation 12.5% at room temperature.
Resumo:
Three kinds of metal(II) tetraazaporphyrin complexes with blue-violet and red light wavelength absorption were synthesized by refluxing tetraazaporphyrin ligand and different metal(II) ions, respectively. Their structures were confirmed by elemental analysis, LDI-TOF-MS, FT-IR and UV-Vis. The solubility of metal(II) tetraazaporphyrin complexes in organic solvents and absorption properties of their chloroform solution and films on K9 glass in the region 250-800 nm were measured. The influence on the difference of absorption maximum from metal(II) tetraazaporphyrin complexes to tetraazaporphyrin ligand by different metal(II) ions was studied. In addition, the thermal stability of the complexes was also evaluated. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
The dissociation behaviors of propane hydrate by high concentration alcohols inhibitors injection were investigated. Methanol (30.0, 60.1, 80.2, and 99.5 wt %) and ethylene glycol (30.0, 60.1, 69.8, 80.2, and 99.5 wt %) solution were injected, respectively, as alcohols inhibitors in 3.5 L transparent reactor. It is shown that the average dissociation rates of propane hydrate injecting methanol and ethylene glycol solution are 0.02059-0.04535 and 0.0302-0.0606 mol.min(-1).L-1, respectively. The average dissociation rates increase with the mass concentration increase of alcohols solution, and it is the biggest when 99.5 wt % ethylene glycol solution was injected. The presence of alcohols accelerates gas hydrate dissociation and reduces the total need of external energy to dissociate the hydrates. Density differences act as driving force, causing the acceleration effects of ethylene glycol on dissociation behaviors of propane hydrate are better than that of methanol with the same injecting flux and mass concentration.
Resumo:
In this paper, low surface energy separators With undercut structures were fabricated through a full solution process, These low Surface energy separators are more suitable for application in inkjet printed passive-matrix displays of polymer light-emitting diodes. A patterned PS film was formed on the P4VP/photoresist film by microtransfer printing firstly. Patterned Au-coated Ni film was formed on the uncovered P4VP/photoresist film by electroless deposition. This metal film was used as mask to pattern the photoresist layer and form undercut structures with the patterned photoresist layer. The surface energy of the metal film also decreased dramatically from 84.6 mj/m(2) to 21.1 mJ/m(2) by modification of fluorinated mercaptan self-assemble monolayer on Au surface. The low surface energy separators were used to confine the flow of inkjet printed PFO solution and improve the patterning resolution of inkjet printing successfully. Separated PFO stripes, complement with the pattern of the separators, formed through inkjet printing.
Resumo:
A novel isomeric polyimide/SiO2 hybrid material was successfully prepared through sol-gel technique, and its structure, thermal properties and nano-indenter properties were investigated. First, 3-[(4-phenylethynyl)phthalimide]propyl triethoxysilane (PEIPTES) was successfully synthesized, its structure was characterized by elemental analysis, FT-IR and C-13 NMR. The researches on solubility and thermal properties of PEIPTES show that it can be used for modifying nano-SiO2 precursor. Nano-SiO2 precursor was synthesized by tetraethoxysilane (TECS) through sol-gel technique. Then the PEIPTES solution and the nano-SiO2 precursor were mixed for 6 h to let the PEIPTES molecules react with the nano-SiO2 precursor, and modified nano-SiO2 precursor was obtained. The modified reaction was confirmed by the analyses of FT-IR. At last, isomeric polyimide/SiO2 hybrid material was produced by using isomeric polyimide resin solution and the modified nano-SiO2 precursor after heat treatment process. The structure analysis by SEM indicated that SiO2 particles dispersed in isomeric polyimide matrix homogeneously with nanoscale. Thermogravimetric analyzer, dynamic mechanical thermal analyzer and nano-indenter XP was employed to detect the properties of the materials, the results demonstrated that isomeric polyimide/SiO2 hybrid material has much better thermal properties and nano-indenter properties than those of isomeric polyimide.
Resumo:
Single-walled carbon nanotubes (SWNTs) have been considered as the leading candidate for nano-device applications ranging from gene therapy and novel drug delivery to membrane separations. The miniaturization of DNA-nanotube devices for biological applications requires fully understanding DNA-nanotube interaction mechanism. We report here, for the first time, that DNA destabilization and conformational transition induced by SWNTs are sequence-dependent. Contrasting changes for SWNTs binding to poly[dGdC]:poly[dGdC] and poly[dAdT]:poly[dAdT] were observed. For GC homopolymer, DNA melting temperature was decreased 40 degrees C by SWNTs but no change for AT-DNA. SWNTs can induce B-A transition for GC-DNA but AT-DNA resisted the transition. Our circular dichroism, competitive binding assay and triplex destabilization studies provide direct evidence that SWNTs induce DNA B-A transition in solution and they bind to the DNA major groove with GC preference.
Resumo:
Non-covalent inclusion complexes formed between an anti-inflammatory drug, oleanolic acid (OA), and alpha-, beta- and gamma-cyclodextrins (CDs) were investigated by means of solubility studies and electrospray ionization tandem mass spectrometry (ESI-MSn). The order of calculated association constants (K-1:1) of complexes between OA and different CDs in solution is in good agreement with the order of their relative peak intensities and the relative CID energies of the complexes under the same ESI-MSn conditions. These results indicate a direct correlation between the behaviors of solution- and gas-phase complexes. ESI-MS can thus be used to evaluate solution-phase non-covalent complexes successfully. The experimental results show that the most stable 1:1 inclusion complexes between three CDs and OA can be formed, but 2:1 CD-OA complexes can be formed with beta- and gamma-CDs. Multi-component complexes of alpha-CD-OA-beta-CD (1:1:1), alpha-CD-OA-gamma-CD (1:1:1) and beta-CD-OA-gamma-CD (1:1:1) were found in equimolar CD mixtures with excess OA. The formation of 2:1 and multi-component 1:1:1 non-covalent CD-OA complexes indicates that beta- and gamma-CD are able to form sandwich-type inclusion non-covalent complexes with OA. The above results can be partly supported by the relative sizes of OA and CD cavities by molecular modeling calculations.
Resumo:
In this paper, we introduce a very convenient method to produce water soluble C-60 derivatives- fullerols by the reaction of C-60 with potassium in toluene solution, FT-IR, H-1 NMR and FABMS proved the multi-hydroxyl and C-60 cage structures of the products, The properties of unstability to light, heat, basicity of aqueous solution and the solubility in some common polar solvents were also described.