6 resultados para smoothing effect
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
The propagation expression of a broadband laser passing through a dispersive wedge is derived on the basis of the Huygens-Fresnel diffraction integral, Smoothing effects caused by the phase perturbation of the dispersive wedge on the intensity profiles are investigated in detail. The phase perturbation of the dispersive wedge induces a relative transverse position shift between the diffraction patterns of different frequency components. The relative transverse position shift is of great benefit to the fill of the intensity peaks of some patterns in the valleys of others when these patterns are overlapped and thus the smoothing effect is achieved. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Starting from the Huygens-Fresnel diffraction integral, the propagation equations of a broadband laser passing through a dispersive lens and a dispersive wedge are derived. Smoothing effect on the side lobes of the focused pattern is achieved as the broadband laser passes through the lens because of the spectral dispersion of the lens. By inserting a dispersive wedge behind the lens, better smoothing effect is realized because a relative position shift between focused patterns of different frequency components is generated due to the spectral dispersion of the wedge. Smoothing effect on the side lobe is obtained even with small bandwidth of the broadband laser as the wedge is used. (c) 2006 Elsevier GmbH. All rights reserved.
Resumo:
Based on the Huygens-Fresnel diffraction integral and Fourier transform, propagation expression of a chirped Gaussian pulse passing through a hard-edged aperture is derived. Intensity distributions of the pulse with different frequency chirp in the near-field and far-field are analyzed in detail by numerical calculations. In the near-field, amplitudes of the intensity peaks generated by the modulation of the hard-edged aperture decrease with increasing the frequency chirp, which results in the improving of the beam uniformity. A physical explanation for the smoothing effect brought by increasing the frequency chirp is given. The smoothing effect is achieved not only in the pulse with Gaussian transverse profile but also in the pulse with Hermite-Gaussian transverse profile when the frequency chirp increases. (C) 2005 Elsevier B.V. All rights reserved.
Resumo:
Starting from the Huygens-Fresnel diffraction integral and the Fourier transform, the propagation expression of a chirped pulse passing through a hard-edged aperture is derived. Using the obtained expression, the intensity distributions of the pulse with different chirp in the near and far fields are analyzed in detail. Due to the modulation of the aperture, many intensity peaks emerge in the intensity distributions of the chirped pulse in the near field. However, the amplitudes of the intensity peaks decrease on increasing the chirp, which results in the smoothing effect in the intensity distributions. The beam smoothing brought by increasing the chirp is explained physically. Also, it is found that the radius of the intensity distribution of the chirped pulse decreases when the chirp increases in the far field. (c) 2005 Elsevier GmbH. All rights reserved.
Resumo:
为满足激光惯性约束聚变中靶面激光辐照不均匀性低于5%的要求, 在目前使用透镜列阵基础上, 提出了谱色散平滑与透镜列阵联用方案, 对其进行数值计算并分析其平滑效果和应用可行性。结果表明:焦斑的不均匀性从单独使用透镜列阵时的14%降低到与谱色散平滑结合后的3%;对焦斑点功率谱的分析表明谱色散平滑通过抑制焦斑中高频的频谱强度达到平滑效果。该方案可以进一步提高焦斑平滑效果, 计算结果对实际应用有着重要的参考意义。