417 resultados para silica-alumina glasses
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
The characteristic features of the absorption and photoluminescence spectra of ZnSe quantum dots (QDs) inside a silica matrix derived from a sol-gel method were studied at room temperature. Compared with the bulk materials, the absorption edges of ZnSe QDs in silica gel glass were shifted to higher energies and the spectra exhibited the discrete excitonic features due to the quantum confinement effects. Besides the band-edge emission, photoluminescence at ultraviolet excitation also showed the emissions related to the higher excitonic states. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
In this study, a novel sol-gel method is used to synthesize amorphous silica-alumina materials with a narrow mesoporous distribution and various Si/Al molar ratios without using any templates and pore-regulating agents. During the preparation procedure, only inexpensive inorganic salts were used as raw materials, instead of expensive and harmful alkoxides. The precursor sol was dried at room temperature in a vacuum box kept at 60 mmHg until it began to form the gel. The results of a nitrogen sorption experiment indicate that the synthesized materials with different Si/Al molar ratios have similar mesoporous distributions (within 2-12 nm). Moreover, it was found that the material's pore size distribution remains at a similar value during the heat treatment from room temperature to 550 degreesC. On the basis of the nitrogen sorption, TEM, and AFM characterization results, a formation mechanism of mesopores which accounts for the experimental data is also suggested. This suggested mechanism involves rearrangement of the primary particles during the drying process to form the precursors of the similarly sized mesopores. The synthesized materials were characterized by XRD, thermal analysis (TG/DTA), Al-27 and Si-29 MAS NMR spectroscopy, SEM, TEM, and AFM. The results of Al-27 and 29Si MAS NMR indicate that the distribution of silicon and aluminum in the synthesized materials is more uniform and homogeneous than that in the mixed oxides prepared via the traditional sol-gel method even at high alumina contents. The type and density of the acid sites were studied using pyridine adsorption-desorption FTIR spectroscopy. It was shown that the acidity of the synthesized materials is higher than that of the silica-alumina materials prepared by conventional methods.
Resumo:
A novel sol-gel process has been developed for the synthesis of amorphous silica-aluminas with controlled mesopore distribution without the use of organic templating agents, e.g., surfactant molecules. Ultrasonic treatment during the synthesis enables production of precursor sols with narrow particle size distribution. Atomic force microscopy analysis shows that these sol particles are spherical in shape with a narrow size distribution (i.e., 13-25 nm) and their aggregation during the gelation creates clusters containing similar sized interparticle mesopores. A nitrogen physiadsorption study indicates that the mesoporous materials containing different Si/Al ratios prepared by the new synthesis method has a large specific surface area (i.e., 587-692 m(2)/g) and similar pore sizes of 2-11 nm. Solid-state Al-27 magic angle spinning (MAS) NMR shows that most of the aluminum is located in the tetrahedral position. A transmission electron microscopy (TEM) image shows that the mesoporous silica-alumina consists of 12-25 nm spheres. Additionally, high-resolution TEM and electron diffraction indicate that some nanoparticles are characteristic of a crystal, although X-ray diffraction and Si-29 MAS NMR analysis show an amorphous material.
Resumo:
This work demonstrates the condition optimization during liquid phase deposition (LPD) Of SiO2/GaAs films. LPD method is further applied to form Al2O3 films on semiconductors with poison-free materials. Proceeding at room temperature with inexpensive equipment, LPD of silica and alumina films is potentially serviceable in microelectronics and related spheres.
Resumo:
Fluorescence of Tm3+/Er3+ codoped bismuth-silica (BS) glasses and the sensitization of Ce3+ are investigated. It shows that Ce3+ codoping with Tm3+/Er3+ in BS glasses results in a quenching of Tm3+ ion emission from F-3(4) to the H-3(6) level. Consequently, the 1.47 mu m emission occurs after the population inversion between the H-3(4) and F-3(4) levels. Furthermore, the codoped glasses show the broad emission spectra over the whole S and C bands with full-width at half-maximum (FWHM) up to about 119nm, as it combines 1.55 mu m emission band of Er3+ with 1.47 mu m emission band of Tm3+ under 800nm excitation.
Resumo:
abstract {Silica glass is an attractive host matrix for the emission ions of rare earth and transition metal ions because it has small thermal expansion coefficient, strong thermal resistance, large fracture strength and good chemical durability and so on. However, a major obstacle to using it as the host matrix is a phenomenon of concentration quenching. In this paper, we introduces a novel method to restrain the concentration quenching by using a porous glass with SiO2 content > 95% (in mass) and prepare intense fluorescence high-SiO2 glasses and high-SiO2 laser glass. The porous glass with high-SiO2 content was impregnated with rare-earth and transition metal ions, and consequently sintered into a compact non-porous glass in reduction or oxidization atmospheres. Various intense fluorescence glasses with high emission yields, a vacuum ultraviolet-excited intensely luminescent glass, high silica glass containing high concentration of Er3+ ion, ultrabroad infrared luminescent Bi-doped high silica glass and Nd3+-doped silica microchip laser glass were obtained by this method. The porous glass is also favorable for co-impregnating multi-active-ions. It can bring effective energy transferring between various active ions in the glass and increases luminescent intensity and extend range of excitation spectrum. The luminescent active ions-doped high-SiO2 glasses are potential host materials for high power solid-state lasers and new transparent fluorescence materials.}
Resumo:
中国科学院山西煤炭化学研究所
Resumo:
In this study, amorphous silica-alumina nanomaterials with narrow mesoporous distribution can be obtained by two novel sol-gel processes, without the use of any templates. The results of our experiments show that the preparation method has a great influence on the precursor sol structure as well as the specific surface area and mesopore volume of the final product, but has no effect on the pore size distribution.
Resumo:
A novel sol-gel process for preparing oxides and mixed oxides sols from precipitation and peptization process is reported in this article. Inorganic salts are used as raw materials in this study. It is found that the amount of acid has great influence on the stability and particle diameter distribution of the precursor sols. Ultrasonic treatment is used to prepare alumina sol at room temperature. The result of Al-27 NMR shows that there exist Al-13(7+) species in the sol. By controlling the sol particles with narrow particle diameter distribution, alumina, titania and silica-alumina (SA) materials with narrow mesoporous distribution are formed by regular packing of sol particles during gelation without using any templates. The results also show that the structure and particle diameter distribution of precursor sol determine the final materials' texture.
Resumo:
The spectral properties in different concentration of Yb ions (0.5-5 mol%)-doped silica glasses are explored in this paper. The glasses are prepared by traditional melting method. The absorption spectra and the fluorescent lifetime (tau(f)) are measured at room temperature and low temperature (18 K). The stimulated cross-section (sigma(emi)) and potential laser properties (beta(min), I-sat, I-min) are calculated based on the absorption spectra. The absorption cross-section (sigma(abs)) are in the range 1.08 x 10(-20) - 1.18 x 10(-20) cm(2) in different glasses, the fluorescence lifetime (tau(f)) change from 1.9 to 1.2 ms with the increase of Yb3+ concentration. The potential laser properties indicate that lead silica glass is a good host for highly Yb ion doping glass. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Porous glass with high-SiO2 content was impregnated with Nd ions, and subsequently sintered at 1100 degrees C into a compact non-porous glass in air or reducing atmosphere. Sintering in a reducing atmosphere produced an intense violet-blue fluorescence at 394 nm. However, the sintering atmospheres almost did not affect the fluorescence properties in the infrared range. A good performance Nd3+-doped silica microchip laser operating at 1064 nm was demonstrated. The Nd-doped sintering glasses with high-SiO2 content are potential host materials for high power solid-state lasers and new transparent fluorescence materials. (c) 2007 Elsevier B.V. All rights reserved.