97 resultados para sex difference
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
The present paper studies focus on the symptoms of the post-traumatic stress disorder in adolescents post-disaster. 482 students from 6 secondary schools and 17 primary schools in the extremely severe disaster areas in Mianzhu, Sichuan province and 785 students from 3 primary schools and 9 secondary schools in the severe disaster areas in Baoji, Shaanxi respectively were surveyed on the symptoms of the post-traumatic stress disorder and the extent of disaster exposure after the Wenchuan earthquake. Self-compiled background information questionnaire and CRIES were used for the investigation. In this study, we contrast the extent of disaster exposure in the two areas in order to explore the related factors about the post-traumatic stress disorder in adolescent post-disaster. The main results of this paper can be summarized as follows: 1. There are significant positive corrections between the post-traumatic stress disorder and the extent of disaster exposure(get trapped in the earthquake、relatives and friends have been injured in the earthquake、look at relatives and friends dying in the earthquake).The more exposed in the disaster, the more serious symptom of the post-traumatic stress disorder. The trauma exposure indicators (get trapped in the earthquake, relatives and friends have been injured in the earthquake、look at relatives and friends dying in the earthquake)were all significant predictors for PTSD severity. 2. There are significant sex difference in the extent(F=8.750, p <0.05) and the incidence rate of PTSD(χ =20.735, df=5,p =0.001), the extent and the incidence rate of girls in Mianzhu is significantly higher than that of boys. 3. The age is also an influence factor of PTSD. The extent (F=7.246, p <0.001)and the incidence rate (χ =20.735, df=5,p =0.001)of PTSD get higher as adolescent in Mianzhu get older. 4. As the extremely severe disaster areas, the extent of disaster exposure of Mianzhu areas significantly higher than that of the severe disaster areas Baoji. However, there are not difference in the extent of PTSD between two areas(t=0.181,df=1265,p=0.857), there are only significant difference in the incidence rate of PTSD between two areas(χ =8.766,df=1,p=0.003), the incidence rate of PTSD in Mianzhu areas significantly higher than that of Baoji areas.
Resumo:
Aspects of the biology of pond-cultured Chinese mitten crab (Eriocheir sinensis H. Milne-Edwards) were studied from June to November 1993. The survival rate of the population was estimated at 18.6%, and there was no significant difference between sexes in growth (t-test, P > 0.05). As the crabs grew from 7.3 to 33.8 mm in mean carapace length, seven molts were observed for the population. The intermolt period ranged from seven to 22 days and lengthened with increased size. Sex ratio at each sampling time did not differ significantly from 1:1 (Chi-square test, P > 0.05). Female crabs presumably required about eleven postlarval molts to reach sexually mature size, which was 34.1 +/- 3.9 (SD) mm. in carapace length in this study.
Resumo:
A new finite difference method for the discretization of the incompressible Navier-Stokes equations is presented. The scheme is constructed on a staggered-mesh grid system. The convection terms are discretized with a fifth-order-accurate upwind compact difference approximation, the viscous terms are discretized with a sixth-order symmetrical compact difference approximation, the continuity equation and the pressure gradient in the momentum equations are discretized with a fourth-order difference approximation on a cell-centered mesh. Time advancement uses a three-stage Runge-Kutta method. The Poisson equation for computing the pressure is solved with preconditioning. Accuracy analysis shows that the new method has high resolving efficiency. Validation of the method by computation of Taylor's vortex array is presented.
Resumo:
A finite compact (FC) difference scheme requiring only bi-diagonal matrix inversion is proposed by using the known high-resolution flux. Introducing TVD or ENO limiters in the numerical flux, several high-resolution FC-schemes of hyperbolic conservation law are developed, including the FC-TVD, third-order FC-ENO and fifth-order FC-ENO schemes. Boundary conditions formulated need only one unknown variable for third-order FC-ENO scheme and two unknown variables for fifth-order FC-ENO scheme. Numerical test results of the proposed FC-scheme were compared with traditional TVD, ENO and WENO schemes to demonstrate its high-order accuracy and high-resolution.
Resumo:
Turbulence and aeroacoustic noise high-order accurate schemes are required, and preferred, for solving complex flow fields with multi-scale structures. In this paper a super compact finite difference method (SCFDM) is presented, the accuracy is analysed and the method is compared with a sixth-order traditional and compact finite difference approximation. The comparison shows that the sixth-order accurate super compact method has higher resolving efficiency. The sixth-order super compact method, with a three-stage Runge-Kutta method for approximation of the compressible Navier-Stokes equations, is used to solve the complex flow structures induced by vortex-shock interactions. The basic nature of the near-field sound generated by interaction is studied.
Resumo:
EEnzyme activity of commercial glucose oxidase was enhanced after purification through a strong anionic exchange resin. In order to get a better insight into this phenomenon, surface pressure–area ( –A) isotherms and surface pressure–time ( –t) isotherms was used to study the interaction and the absorption at different pH values of the subphases between octadecylamine and glucose oxidase purified by a styrene system quaternary ammonium type strongly basic anionic exchange resin. Circular dichroism (CD), electrophoresis and enzyme activity measurements were conducted to study these phenomena. A preliminary hypothesis has been suggested to explain why the enzyme activity of purified glucose oxidase was higher than that of the commercial one. © 2002 Elsevier Science B.V. All rights reserved.
Resumo:
For simulating multi-scale complex flow fields it should be noted that all the physical quantities we are interested in must be simulated well. With limitation of the computer resources it is preferred to use high order accurate difference schemes. Because of their high accuracy and small stencil of grid points computational fluid dynamics (CFD) workers pay more attention to compact schemes recently. For simulating the complex flow fields the treatment of boundary conditions at the far field boundary points and near far field boundary points is very important. According to authors' experience and published results some aspects of boundary condition treatment for far field boundary are presented, and the emphasis is on treatment of boundary conditions for the upwind compact schemes. The consistent treatment of boundary conditions at the near boundary points is also discussed. At the end of the paper are given some numerical examples. The computed results with presented method are satisfactory.
Resumo:
High order accurate schemes are needed to simulate the multi-scale complex flow fields to get fine structures in simulation of the complex flows with large gradient of fluid parameters near the wall, and schemes on non-uniform mesh are desirable for many CFD (computational fluid dynamics) workers. The construction methods of difference approximations and several difference approximations on non-uniform mesh are presented. The accuracy of the methods and the influence of stretch ratio of the neighbor mesh increment on accuracy are discussed. Some comments on these methods are given, and comparison of the accuracy of the results obtained by schemes based on both non-uniform mesh and coordinate transformation is made, and some numerical examples with non-uniform mesh are presented.
Resumo:
A high order accurate finite difference method for direct numerical simulation of coherent structure in the mixing layers is presented. The reason for oscillation production in numerical solutions is analyzed, It is caused by a nonuniform group velocity of wavepackets. A method of group velocity control for the improvement of the shock resolution is presented. In numerical simulation the fifth-order accurate upwind compact difference relation is used to approximate the derivatives in the convection terms of the compressible N-S equations, a sixth-order accurate symmetric compact difference relation is used to approximate the viscous terms, and a three-stage R-K method is used to advance in time. In order to improve the shock resolution the scheme is reconstructed with the method of diffusion analogy which is used to control the group velocity of wavepackets. (C) 1997 Academic Press.
Resumo:
A new compact finite difference-Fourier spectral hybrid method for solving the three dimensional incompressible Navier-Stokes equations is developed in the present paper. The fifth-order upwind compact finite difference schemes for the nonlinear convection terms in the physical space, and the sixth-order center compact schemes for the derivatives in spectral space are described, respectively. The fourth-order compact schemes in a single nine-point cell for solving the Helmholtz equations satisfied by the velocities and pressure in spectral space is derived and its preconditioned conjugate gradient iteration method is studied. The treatment of pressure boundary conditions and the three dimensional non-reflecting outflow boundary conditions are presented. Application to the vortex dislocation evolution in a three dimensional wake is also reported.
Resumo:
The generalized Shmuely Difference Algorithm (GSDA) is presented here to analyze the dynamic fracture performance of orthogonal-anisotropic composite materials, such as glass fibre reinforced phenolplast. The difference recurrence Formulae and boundary condition difference extrapolation formulae are derived and programmed. The dynamic stress intensity factors (DSIF) of the isotropic and anisotropic centrally cracked plates are computed respectively using GSDA and compared with that published previously. GSDA is proved effective and reliable. Copyright (C) 1996 Elsevier Science Ltd.
Resumo:
A perturbational h4 compact exponential finite difference scheme with diagonally dominant coefficient matrix and upwind effect is developed for the convective diffusion equation. Perturbations of second order are exerted on the convective coefficients and source term of an h2 exponential finite difference scheme proposed in this paper based on a transformation to eliminate the upwind effect of the convective diffusion equation. Four numerical examples including one- to three-dimensional model equations of fluid flow and a problem of natural convective heat transfer are given to illustrate the excellent behavior of the present exponential schemes, the h4 accuracy of the perturbational scheme is verified using double precision arithmetic.
Resumo:
Perturbations are applied to the convective coefficients and source term of a convection-diffusion equation so that second-order corrections may be applied to a second-order exponential scheme. The basic Structure of the equations in the resulting fourth-order scheme is identical to that for the second order. Furthermore, the calculations are quite simple as the second-order corrections may be obtained in a single pass using a second-order scheme. For one to three dimensions, the fourth-order exponential scheme is unconditionally stable. As examples, the method is applied to Burgers' and other fluid mechanics problems. Compared with schemes normally used, the accuracies are found to be good and the method is applicable to regions with large gradients.
Resumo:
A new aerodynamic principle of flame stabilization and combustion intensification, the coflow jets with large velocity difference, is described. One or more small high-velocity jets of air or steam, injected off the axis and in the same direction as the low-velocity main fuel-air flow into the combustor, create a large recirculation zone of high turbulence intensity in which the combustibles and high temperature gases are effectively mixed, so that stable and intensive combustion can be maintained even for fuels with poor ignition. A pulverized coal combustor based on the principle mentioned above is shown to be characteristic of excellent combustoom and a simple structure. A number of precombustors of this type are in operation at some power stations and industrial boilers of China. Using such precombustor, successtul startups and part-load operation of the boilers have become available under conditions of unpreheated air and low-grade coal with volatiles as low as 15% and ash content as high as 30%. This principle shows good promise as an attractive new technology of combustion.