81 resultados para sensor-based control

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A novel fiber Bragg grating (FBG) pressure sensor based on the double shell cylinder with temperature compensation is presented. in the sensing scheme, a sensing FBG is affixed in the tangential direction on the outer surface of the inner cylinder, and another FBG is affixed in the axial direction to compensate the temperature fluctuation. Based on the theory of elasticity, the theoretical analysis of the strain distribution of the sensing shell is presented. Experiments are carried out to test the performance of the sensor. A pressure sensitivity of 0.0937 nm/MPa has been achieved. The experimental results also demonstrate that the two FBGs have the same temperature sensitivity, which can be utilized to compensate the temperature induced wavelength shift during the pressure measurement. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PVC based membranes of a double armed crown ether, N, N'-dibenzyl, 1,4,10,13-tetraoxa-7, 16-diaza cyclooctadecane (I) as ionophore with sodium tetra phenyl borate (NaTPB) as anion excluder and with many plasticizing solvent mediators have been prepared and used for Hg(II) ion determination. The membrane with DBBP (dibutyl butyl phosphonate ) as plasticizer with various ingredients in the ratio PVC: I: NaTPB: DBBP (150: 12: 2: 100) shows the best results in terms of working concentration range (3.1x10-5-1.0x10-tM) with a Nernstian slope (29.0′0.5 mV/decade of activity). The electrode works in the pH range 2.1-4.5. The response time of the sensor is 15s and it can be used for about 4 months in aqueous as well as in non-aqueous medium. It has good stability and reproducibility. The potentiometric selectivity coefficient values for mono-, di-, and trivalent cations are tabulated. The sensor is highly selective for Hg2+ in the presence of normal interferents like cadmium, silver, sodium and iron.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A novel nonenzymatic glucose sensor was developed based on the renewable Ni nanoparticle-loaded carbon nanofiber paste (NiCFP) electrode. The NiCF nanocomposite was prepared by combination of electrospinning technique with thermal treatment method. The scanning electron microscopy (SEM) and transmission electron microscopy (TEM) images showed that large amounts of spherical nanoparticles were well dispersed on the surface or embedded in the carbon nanofibers. And the nanoparticles were composed of Ni and NiO, as revealed by energy dispersive X-ray spectroscopy (EDX) and X-ray powder diffraction (XRD). In application to nonenzymatic glucose determination, the renewable NiCFP electrodes, which were constructed by simply mixing the electrospun nanocomposite with mineral oil, exhibited strong and fast amperometric response without being poisoned by chloride ions. Low detection limit of 1 mu M with wide linear range from 2 mu M to 2.5 mM (R = 0.9997) could be obtained.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new fluorescent sensor for the sensitive and selective detection of cyanide (CN-) in aqueous media was developed herein. The sensing approach is based on CN--modulated quenching behavior of Cu2+ toward the photoluminescence (PL) of CdTe quantum dots (QDs). In the presence of CN-, the PL of QDs that have been quenched by Cu2+ was found to be efficiently recovered, which then allows the detection of CN- in a very simple approach. Experimental results showed that the pH of the buffer solution, concentration of copper ions, and size of CdTe QDs all influenced the response of the sensor to CN-. Under the optimal conditions, a good linear relationship between the PL intensity and the concentration of CN- can be obtained in the range of 3.0 x 10(-7) to 1.2 x 10(-5) M, with a detection limit as low as 1.5 x 10(-7) M. In addition, the present fluorescent sensor possesses remarkable selectivity for cyanide over other anions, and negligible influences were observed on the cyanide detection by the coexistence of other anions or biological species (such as albumin and typical blood constituents).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An effective electrochemiluminescence (ECL) sensor based on Nafion/poly(sodium 4-styrene sulfonate) (PSS) composite film-modified ITO electrode was developed. The Nafion/PSS/Ru composite film was characterized by atomic force microscopy, UV-vis absorbance spectroscopy and electrochemical experiments. The Nafion/PSS composite film could effectively immobilize tris(2,2'-bipyridyl)ruthenium(II) (Ru(bpy)(3)(2+)) via ion-exchange and electrostatic interaction. The ECL behavior of Ru(bpy)(3)(2+) immobilized in Nafion/PSS composite film was investigated using tripropylamine (TPA) as an analyte. The detection limit (S/N = 3) for TPA at the Nafion/PSS/Ru composite-modified electrode was estimated to be 3.0 nM, which is 3 orders of magnitude lower than that obtained at the Nafion/Ru modified electrode. The Nafion/PSS/Ru composite film-modified indium tin oxide (ITO) electrode also exhibited good ECL stability. In addition, this kind of immobilization approach was simple, effective, and timesaving.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Herein, homogenously partial sulfonation of polystyrene (PSP) was performed. An effective electrochemiluminescence (ECL) sensor based on PSP with carbon nanotube (CNTs) composite film was developed. Cyclic voltammetry and electrochemical impendence spectroscopy were applied to characterize this composite film. The PSP was used as an immobilization matrix to entrap the ECL reagent Ru(bpy)(3)(2+) due to the electrostatic interactions between sulfonic acid groups and Ru(bpy)(3)(2+) cations. The introduction of CNTs into PSP acted not only as a conducting pathway to accelerate the electron transfer but also as a proper matrix to immobilize Ru(bpy)(3)(2+) on the electrode by hydrophobic interaction. Furthermore, the results indicated the ECL intensity produced at this composite film was over 3-fold compared with that of the pure PSP film due to the electrocatalytic activity of the CNTs. Such a sensor was verified by the sensitive determinations of 2-(dibutylamino)ethanol and tripropylamine.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We initially report an electrochemical sensing platform based on molecularly imprinted polymers (MIPs) at functionalized Indium Tin Oxide Electrodes (ITO). In this research, aminopropyl-derivatized organosilane aminopropyltriethoxysilane (APTES), which plays the role of functional monomers for template recognition, was firstly self-assembled on an ITO electrode and then dopamine-imprinted sol was spin-coated on the modified surface. APTES which can interact with template dopamine (DA) through hydrogen bonds brought more binding sites located closely to the surface of the ITO electrode, thus made the prepared sensor more sensitive for DA detection. Potential scanning is presented to extract DA from the modified film, thus DA can rapidly and completely leach out. The affinity and selectivity of the resulting biomimetic sensor were characterized using cyclic voltammetry (CV). It exhibited an increased affinity for DA over that of structurally related molecules, the anodic current for DA oxidation depended on the concentration of DA in the linear range from 2 x 10(-6) M to 0.8 x 10(-3) M with a correlation coefficient of 0.9927.In contrast, DA-templated film prepared under identical conditions on a bare ITO showed obviously lower response toward dopamine in solution.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A novel method to fabricate a hydrogen peroxide sensor was developed by immobilizing horseradish peroxidase (HRP) on colloidal An modified ITO conductive glass support. The cleaned glass support was modified with (3-aminopropyl)trimethoxysilane (APTMS) first to yield an interface for the assembly of colloidal An. Then 15 nm colloidal Au particles were chemisorbed onto the amine groups of the APTMS. Finally, HRP was adsorbed onto the surface of the colloidal An. The immobilized HRP displayed excellent electrocatalytical response to the reduction of hydrogen peroxide. The performance and factors influencing the resulted biosensor were studied in detail. The resulted biosensor exhibited fast amperometric response (within 5 s) to H2O2. The detection limit of the biosensor was 8.0 mumol l(-1), and linear range was from 20.0 mumol l(-1) to 8.0 mmol l(-1). Furthermore, the resulted biosensor exhibited high sensitivity, good reproducibility, and long-term stability.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A novel third-generation hydrogen peroxide (H2O2) biosensor was developed by immobilizing horseradish peroxidase (HRP) on a biocompatible gold electrode modified with a well-ordered, self-assembled DNA film. Cysteamine was first self-assembled on a gold electrode to provide an interface for the assembly of DNA molecules. Then DNA was chemisorbed onto the self-assembled monolayers (SAMs) of cysteamine to form a network by controlling DNA concentration. The DNA-network film obtained provided a biocompatible microenvironment for enzyme molecules, greatly amplified the coverage of HRP molecules on the electrode surface, and most importantly could act as a charge carrier which facilitated the electron transfer between HRP and the electrode. Finally, HRP was adsorbed on the DNA-network film. The process of the biosensor construction was followed by atomic force microscopy (AFM). Voltammetric and time-based amperometric techniques were employed to characterize the properties of the biosensor derived. The enzyme electrode achieved 95% of the steady-state current within 2 s and had a 0.5 mu mol l(-1) detection limit of H2O2. Furthermore, the biosensor showed high sensitivity, good reproducibility, and excellent long-term stability.