228 resultados para semi-confined
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
Communication: Conducting semi-interpenetrating network composites with low conductivity percolation threshold were synthesized from waterborne conducting polyaniline (cPAn) and melamine-urea resin, A perfect network of cPAn in the composite was observed by means of TEM (see Figure). The conductivity stability of cPAn in water was improved by confining the chain mobility of cPAn via in-situ crosslinking of melamine-urea resin. Cyclic voltammetry of the composites reveals electrochemical activities and reversibilities similarly to those of pure cPAn.
Resumo:
EQUILATERAL-TRIANGLE; MU-M; LASERS; MICROLASERS; MICRODISK Abstract: Mode characteristics for midinfrared microsquare resonators with sloped sidewalls and confined metal layers are investigated by finite-difference time-domain (FDTD) techniques. For a microsquare with a side length of 10 mu m, the mode quality (Q)-factors of 8329, 4772, and 2053 are obtained for TM5,7 mode at wavelength 7.1 mu m by three-dimensional FDTD simulations, as the tilting angles of the side walls are 90 degrees, 88 degrees, and 86 degrees, respectively. Furthermore, microsquare resonators laterally surrounded by SiO2 and metal layers are investigated by the two-dimensional FDTD technique for the metal layers of Au, Ti-Au, Ag-Au, and Ti-Ag-Au, respectively.
Resumo:
Directional emission InP/AlGaInAs square-resonator microlasers with a side length of 20 mu m are fabricated by standard photolithography and inductively coupled-plasma etching technique. Multimode resonances with about seven distinct mode peaks in a free-spectral range are observed from 1460 to 1560 nm with the free-spectral range of 12.1 nm near the wavelength of 1510 nm, and the mode refractive index versus the photon energy E (eV) as 3.07152+0.18304E are obtained by fitting the laser spectra with an analytical mode wavelength formula derived by light ray method. In addition, mode field pattern is simulated for cold cavity by two dimensional finite-difference time-domain technique.
Resumo:
We have investigated magnetic properties of laterally confined structures of epitaxial Fe films on GaAs (001). Fe films with different thicknesses were grown by molecular-beam epitaxy and patterned into regular arrays of rectangles with varying aspect ratios. In-plane magnetic anisotropy was observed in all of the patterned Fe films both at 15 and 300 K. We have demonstrated that the coercive fields can be tuned by varying the aspect ratios of the structures. The magnitudes of the corresponding anisotropy constants have been determined and the shape anisotropy constant is found to be enhanced as the aspect ratio is increased.
Resumo:
Using analytical expressions for the polarization field in GaN quantum dot, and an approximation by separating the potential into a radial and an axial, we investigate theoretically the quantum-confined Stark effects. The electron and hole energy levels and optical transition energies are calculated in the presence of an electric field in different directions. The results show that the electron and hole energy levels and the optical transition energies can cause redshifts for the lateral electric field and blueshifts for the vertical field. The rotational direction of electric field can also change the energy shift.
Resumo:
The confined longitudinal-optical phonon-assisted tunneling through a parabolic quantum well with double barriers in a magnetic field perpendicular to the interfaces is studied theoretically based on a dielectric continuum model. The numerical results show that the applied magnetic field sharpens and heightens the phonon-assisted tunneling peaks in agreement with experimental observation. Furthermore, the phonon-assisted magnetotunneling peaks shift towards the higher biases as the magnetic field increases. In contrast to the results for a rectangular quantum well, the ratio of peak to valley of the phonon-assisted tunneling is larger for the wider well case. It also indicates that the phonon-assisted tunneling current peaks can be easily observed for a wider parabolic quantum well. (C) 2008 Published by Elsevier B.V.
Resumo:
Quantum-confined Stark effect and built-in dipole moment in self-assembled InAs/GaAs quantum dots (QDs), which are grown at relative low temperature (460degreesC) and embedded in GaAs p-i-n structure, have been studied by dc-biased electroreflectance. Franz-Keldysh oscillations from the undoped GaAs layer are used to determine the electric field under various bias voltages. Stark shift of -34 meV for the ground-state interband transition of the QDs is observed when the electric field increases from 105 to 308 kV/cm. The separation of the electron and hole states in the growth direction of 0.4 nm, corresponding to the built-in dipole moment of 6.4x10(-29) C m, is determined. It is found that the electron state lies above that of the hole, which is the same as that predicted by theoretical calculations for ideal pyramidal InAs QDs. (C) 2004 American Institute of Physics.
Resumo:
We report the fabrication and the measurement of microcavities whose optical eigenmodes were discrete and were well predicted by using the model of the photonic dot with perfectly reflected sidewalls. These microcavities were consisted of the semiconductor pillar fabricated by the simple wet-etched process and successive metal coating. Angle-resolved photoluminescence spectra demonstrate the characteristic emission of the corresponding eigenmodes, as its pattern revealed by varying both polar (0) and azimuthal (45) angles. It is shown that the metal-coated sidewalls can provide an efficient way to suppress the emission due to the leaking modes in these pillar microcavities.
Resumo:
We theoretically investigate the energy spectra of two-electron two-dimensional (2e 2D) quantum dots (QDs) confined by triangular potentials and bowl-like potentials in a magnetic field by exact diagonalization in the framework of effective mass theory. An in-plane electric field is,found to contribute to the singlet-triplet transition of the ground state of the 2e 2D QDs confined by triangular or bowl-like potentials in a perpendicular magnetic field. The stronger the in-plane electric field, the smaller the magnetic field for the total spin of the ground states in the dot systems to change from S = 0 to S = 1. However, the influence of an in-plane electric field on the singlet-triplet transition of the ground state of two electrons in a triangular QD modulated by a perpendicular magnetic field is quite small because the triangular potential just deviates from the harmonic potential well slightly. We End that the strength of the perpendicular magnetic field needed for the spin singlet-triplet transition of the ground state of the QD confined by a bowl-like potential is reduced drastically by applying an in-plane electric field.
Resumo:
Quantum-confined Stark effects in GaAs/AlxGa1-xAs self-assembled quantum dots are investigated theoretically in the framework of effective-mass envelope function theory. The electron and hole energy levels and optical transition energies are calculated in the presence of an electric field in different directions. In our calculation, the effect of finite offset, valence-band mixing, the effects due to the different effective masses of electrons and holes in different regions, and the real quantum dot structures are all taken into account. The results show that the electron and hole energy levels and the optical transition energies can cause blueshifts when the electric field is applied along the opposite to the growth direction. Our calculated results are useful for the application of hierarchical self-assembly of GaAs/AlxGa1-xAs quantum dots to photoelectric devices. (c) 2005 American Institute of Physics.
Resumo:
Electroluminescence (EL) from AlInGaN-InGaN multiquantum-well violet light-emitting diodes is investigated as a function of forward bias. Two distinct regimes have been identified: 1) quantum-confined Stark effect at low and moderately high forward biases; 2) heating effect at high biases. In the different regimes, the low-temperature EL spectra exhibit different spectral features which are discussed in detail.
Resumo:
The laterally confining potential of quantum dots (QDs) fabricated in semiconductor heterostructures is approximated by an elliptical two-dimensional harmonic-oscillator well or a bowl-like circular well. The energy spectrum of two interacting electrons in these potentials is calculated in the effective-mass approximation as a function of dot size and characteristic frequency of the confining potential by the exact diagonalization method. Energy level crossover is displayed according to the ratio of the characteristic frequencies of the elliptical confinement potential along the y axis and that along the x axis. Investigating the rovibrational spectrum with pair-correlation function and conditional probability distribution, we could see the violation of circular symmetry. However, there are still some symmetries left in the elliptical QDs. When the QDs are confined by a "bowl-like" potential, the removal of the degeneracy in the energy levels of QDs is found. The distribution of energy levels is different for the different heights of the barriers. (C) 2003 American Institute of Physics.
Resumo:
We study the electronic energy levels and probability distribution of vertically stacked self-assembled InAs quantum discs system in the presence of a vertically applied electric field. This field is found to increase the splitting between the symmetric and antisymmetric levels for the same angular momentum. The field along the direction from one disc to another affects the electronic energy levels similarly as that in the opposite direction because the two discs are identical. It is obvious from our calculation that the probability of finding an electron in one disc becomes larger when the field points from this disc to the other one.
Resumo:
The magneto-Stark effect in a diluted magnetic semiconductor (DMS) coupled quantum well (CQW) induced by an in-plane magnetic field is investigate theoretically. Unlike the usual electro-Stark effects, in a DMS CQW the Lorenz force leads to a spatially separated exciton. The in-plane magnetic field can shift the ground state of the magnetoexciton from a zero in-plane center of mass (CM)/momentum to a finite CM momentum, and render the ground state of magnetoexciton stable against radiative recombination due to momentum conservation. (C) 2002 American Institute of Physics.
Resumo:
We have studied the capacitance-voltage characteristics of an optically excited wide quantum well. Both self-consistent simulations and experimental results show the striking quantum contribution to the capacitance near zero bias which is ascribed to the swift decreasing of the overlap between the electron and hole wave functions in the well as the longitudinal field goes up. This quantum capacitance feature is regarded as an electrical manifestation of the quantum-confined Stark effect.