77 resultados para radiation absorption analysis
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
Plants have an integral adaptive mechanism to solar UV -B radiation from plant morphology to physiological action and the formation of UV -B radiation absorption pigment is very significant. There is the close interrelation between plant adaptive mechanism and its origin and distribution, which has the profound molecular basis. It is important to strengthen study on the enhancing solar UV _ B radiation instead of being afraid of or optimistic about it in order to solve the uncertainties and make scientific decision.
Resumo:
Uptake and release of carbon in grassland ecosystems is very critical to the global carbon balance and carbon storage. In this study, the dynamics of net ecosystem CO2 exchange (FNEE) of two grassland ecosystems were observed continuously using the eddy covariance technique during the growing season of 2003. One is the alpine shrub on the Tibet Plateau, and the other is the sem-arid Leymus chinensis steppe in Inner Mongolia of China. It was found that the FNEE of both ecosystems was significantly depressed under high solar radiation. Comprehensive analysis indicates that the depression of FNEE in the L. chinensis steppe was the results of decreased plant photosynthesis and increased ecosystem respiration (R-eco) under high temperature. Soil water stress in addition to the high atmospheric demand under the strong radiation was the primary factor limiting the stomatal conductance. In contrast, the depression of FNEE in the alpine shrub was closely related to the effects of temperature on both photosynthesis and ecosystem respiration, coupled with the reduction of plant photosynthesis due to partial stomatal closure under high temperature at mid-day. The R,c of the alpine shrub was sensitive to soil temperature during high turbulence (u* > 0.2 m s(-1)) but its FNEE decreased markedly when the temperature was higher than the optimal value of about 12 degrees C. Such low optimal temperature contrasted the optimal value (about 20 degrees C) for the steppe, and was likely due to the acclimation of most alpine plants to the long-term low temperature on the Tibet Plateau. We inferred that water stress was the primary factor causing depression of the FNEE in the semi-arid steppe ecosystem, while relative high temperature under strong solar radiation was the main reason for the decrease of FNEE in the alpine shrub. This study implies that different grassland ecosystems may respond differently to climate change in the future. (c) 2006 Elsevier B.V All rights reserved.
Resumo:
In China and world, more than half the recent basin discovered reserves involve lithologic hydrocarbon reservoir reserves. The major target for further hydrocarbon basin exploration is the subtle reservoir. The Liaodong Bay prospect is much important in Bohai Sea, which includes Liaoxi low uplift, Liaodong uplift, Liaoxi sag and Liaozhong sag. After dozens years’ exploration in Liaodong Bay, few unexplored big-and-middle-sized favorable structural traps are remained and most of the stock structure targets are bad for fragmentary. Thus seeking for new prospect area and making a breakthrough, have become the unique way to relieve the severe exploration condition in Liaodong Bay. Technique Route Based on the petrophysical property of target area, the seismic forward inference of typical subtle trap model is expanded with analysis of logging, seismic and geologic data. According to petrophysical characteristics and forward inference and research on seismic response of actual seismic data in target area, the optimization of geophysical technique is used in subtle trap identification and the geophysical identification technique system of subtle reservoir is formed. The Key Research ① Petrophysical Model The petrophysical parameter is the basic parameter for seismic wave simulation. The seismic response difference of rocks bearing different fluids is required. With the crossplot of log data, the influence of petrophysical parameters on rock elastic properties of target area is analyzed, such as porosity, shale index, fluid property and saturation. Based on the current research on Biot-Gassmann and Kuster-Toksoz model, the petrophysical parameter calculator program which can be used for fluid substitution is established. ② S-wave evaluation based on conventional log data The shear velocity is needed during forward inference of AVO or other elastic wave field. But most of the recent conventional log data is lack of shear wave. Thus according to the research on petrophysical model, the rock S-wave parameter can be evaluated from conventional log data with probability inverse method. ③ AVO forward modeling based on well data For 6 wells in JZ31-6 block and 9 wells in LD22-1 block, the AVO forward modeling recording is made by log curve. The classification of AVO characteristics in objective interval is made by the lithologic information. ④ The 2D parameter model building and forward modeling of subtle hydrocarbon trap in target area. According to the formation interpretation of ESS03D seismic area, the 2D parameter model building and seismic wave field forward modeling are carried on the given and predicted subtle hydrocarbon trap with log curve. ⑤ The lithology and fluid identification of subtle trap in target area After study the seismic response characteristics of lithology and fluid in given target area, the optimization of geophysical technique is used for lithology identification and fluid forecast. ⑥The geophysical identification technique system of subtle reservoir The Innovative Points of this Paper ① Based on laboratory measurement and petrophysical model theory, the rock S-wave parameter can be evaluated from conventional log data with probability inverse method. Then the fluid substitution method based on B-G and K-T theory is provided. ② The method and workflow for simulating seismic wave field property of subtle hydrocarbon trap are established based on the petrophysical model building and forward modeling of wave equation. ③ The description of subtle trap structural feature is launched. According to the different reflection of frequency wave field structural attribute, the fluid property of subtle trap can be identified by wave field attenuation attribute and absorption analysis. ④ It’s the first time to identify subtle trap by geophysical technique and provide exploration drilling well location. ⑤ The technique system of subtle reservoir geophysical identification is formed to provide available workflow and research ideas for other region of interest.
Resumo:
Applying the model dielectric function method, we have expressed the absorption coefficient of GaSb analytically at room temperature relating to the contribution of various critical points of its electronic band structure. The calculated absorption spectrum shows good agreement with the reported experimental data obtained by spectral ellipsometry on nominally undoped sample. Based on this analytical absorption spectrum, we have qualitatively evaluated the response of active absorbing layer structure and its photoelectric conversion properties of GaSb thermophotovoltaic device on the perturbation of external thermal radiation induced by the varying radiator temperature or emissivity. Our calculation has demonstrated that desirable thickness to achieve the maximum conversion efficiency should be decreased with the increment of radiator temperature and the performance degradation brought by any structure deviation from its optimal one would be stronger meanwhile. For the popular radiator temperature, no more than 1500 K in a real solar thermophotovoltaic system, and typical doping profile in GaSb cell, a reasonable absorbing layer structure parameter should be controlled within 100-300 nm for the emitter while 3000-5000 nm for the base.
Resumo:
The magnetoexcitonic optical absorption of a GaAs bulk semiconductor driven by a terahertz (THz) field is investigated numerically. The method of the solution of the initial-value problem, in combination with the perfect matched layer technique, is used to calculate the optical susceptibility, with Coulomb interaction, Landau quantization, and THz fields involved nonperturbatively. It shows that there appear replicas and sidebands of magnetoexciton of different Landau levels, which greatly enrich the magneto-optical spectrum in the presence of a driving THz field. Copyright (C) EPLA, 2008.
Resumo:
The excitonic optical absorption of GaAs bulk semiconductors under intense terahertz (THz) radiation is investigated numerically. The method of solving initial-value problems, combined with the perfect matched layer technique, is used to calculate the optical susceptibility. In the presence of a driving THz field, in addition to the usual exciton peaks, 2p replica of the dark 2p exciton and even-THz-photon-sidebands of the main exciton resonance emerge in the continuum above the band edge and below the main exciton resonance. Moreover, to understand the shift of the position of the main exciton peak under intense THz radiation, it is necessary to take into consideration both the dynamical Franz-Keldysh effect and ac Stark effect simultaneously. For moderate frequency fields, the main exciton peak decreases and broadens due to the field-induced ionization of the excitons with THz field increasing. However, for high frequency THz fields, the characteristics of the exciton recur even under very strong THz fields, which accords with the recent experimental results qualitatively.
Resumo:
IEECAS SKLLQG
Resumo:
IEECAS SKLLQG
Resumo:
The "interaction effect" between aluminum foam and metal column that takes place when foam-filled hat sections (top-hats and double-hats) are axially crushed was investigated in this paper. Based on experimental examination, numerical simulation and analytical models, a systemic approach was developed to partition the energy absorption quantitatively into the foam filler component and the hat section component, and the relative contribution of each component to the overall interaction effect was therefore evaluated. Careful observation of the collapse profile found that the crushed foam filler could be further divided into two main energy-dissipation regions: densified region and extremely densified region. The volume reduction and volumetric strain of each region were empirically estimated. An analytical model pertinent to the collapse profile was thereafter proposed to find the more precise relationship between the volume reduction and volumetric strain of the foam filler. Combined the superfolding element model for hat sections with the current model according to the coupled method, each component energy absorption was subsequently derived, and the influence of some controlling factors was discussed. According to the finite element analysis and the theoretical modeling, when filled with foam, energy absorption was found to be increased both in the hat section and the foam filler, whereas the latter contributes predominantly to the interaction effect. The formation of the extremely densified region in the foam filler accounts for this effect.
Resumo:
A set of scaling criteria of a polymer flooding reservoir is derived from the governing equations, which involve gravity and capillary force, compressibility of water, oil, and rock, non-Newtonian behavior of the polymer solution, absorption, dispersion, and diffusion, etc. A numerical approach to quantify the dominance degree of each dimensionless parameter is proposed. With this approach, the sensitivity factor of each dimensionless parameter is evaluated. The results show that in polymer flooding, the order of the sensitivity factor ranges from 10(-5) to 10(0) and the dominant dimensionless parameters are generally the ratio of the oil permeability under the condition of the irreducible water saturation to water permeability under the condition of residual oil saturation, density, and viscosity ratios between water and oil, the reduced initial oleic phase saturation and the shear rate exponent of the polymer solution. It is also revealed that the dominant dimensionless parameters may be different from case to case. The effect of some physical variables, such as oil viscosity, injection rate, and permeability, on the dominance degree of the dimensionless parameters is analyzed and the dominant ones are determined for different cases.
Resumo:
A full two-fluid model of reacting gas-particle flows with an algebraic unified second-order moment (AUSM) turbulence-chemistry model is used to simulate Beijing coal combustion and NOx formation. The sub-models are the k-epsilon-kp two-phase turbulence model, the EBU-Arrhenius volatile and CO combustion model, the six-flux radiation model, coal devolatilization model and char combustion model. The blocking effect on NOx formation is discussed. In addition, the chemical equilibrium analysis is used to predict NOx concentration at different temperature. Results of CID simulation and chemical equilibrium analysis show that, optimizing air dynamic parameters can delay the NOx formation and decrease NOx emission, but it is effective only in a restricted range. In order to decrease NOx emission near to zero, the re-burning or other chemical methods must be used.