7 resultados para primary motor cortex

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dopamine (DA) D-1 receptor compounds were examined in monkeys for effects on the working memory functions of the prefrontal cortex and on the fine motor abilities of the primary motor cortex. The D-1 antagonist, SCH23390, the partial D-1 agonist, SKF38393, and the full D-1 agonist, dihydrexidine, were characterized in young control monkeys, and in aged monkeys with naturally occurring catecholamine depletion. In addition, SKF38393 was tested in young monkeys experimentally depleted of catecholamines with chronic reserpine treatment. Injections of SCH23390 significantly impaired the memory performance of young control monkeys, but did not impair aged monkeys with presumed catecholamine depletion. Conversely, the partial agonist, SKF38393, improved the depleted monkeys (aged or reserpine-treated) but did not improve young control animals. The full agonist, dihydrexidine, did improve memory performance in young control monkeys, as well as in a subset of aged monkeys. Consistent with D, receptor mechanisms, agonist-induced improvements were blocked by SCH23390. Drug effects on memory performance occurred independently of effects on fine motor performance. These results underscore the importance of DA D-1 mechanisms in cognitive function, and provide functional evidence of DA system degeneration in aged monkeys. Finally, high doses of D-1 agonists impaired memory performance in aged monkeys, suggesting that excessive D-1 stimulation may be deleterious to cognitive function.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Navigated transcranial magnetic stimulation (TMS) combined with diffusion-weighted magnetic resonance imaging (DW-MRI) and tractography allows investigating functional anatomy of the human brain with high precision. Here we demonstrate that working memory (WM) processing of tactile temporal information is facilitated by delivering a single TMS pulse to the middle frontal gyrus (MFG) during memory maintenance. Facilitation was obtained only with a TMS pulse applied to a location of the MFG with anatomical connectivity to the primary somatosensory cortex (S1). TMS improved tactile WM also when distractive tactile stimuli interfered with memory maintenance. Moreover, TMS to the same MFG site attenuated somatosensory evoked responses (SEPs). The results suggest that the TMS-induced memory improvement is explained by increased top-down suppression of interfering sensory processing in S1 via the MFG-S1 link. These results demonstrate an anatomical and functional network that is involved in maintenance of tactile temporal WM. (C) 2009 Elsevier Inc. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The D2 dopamine (DA) receptor agonist, quinpirole, was characterized in young adult monkeys, young reserpine-treated monkeys and aged monkeys to assess the contribution of DA to age-related loss of prefrontal cortical (PFC) cognitive function, Monkeys were tested on a delayed response memory task that depends on the PFC, and a fine motor task that taps the functions of the motor cortex, In young adult monkeys, low quinpirole doses impaired performance of the PFC and fine motor tasks, while higher doses improved memory performance and induced dyskinesias and ''hallucinatory-like'' behaviors. The pattern of the quinpirole response in reserpine-treated monkeys suggested that the impairments in delayed response and fine motor performance resulted from drug actions at D2 autoreceptors, while the improvement in delayed response performance, dyskinesias and ''hallucinatory-like'' behaviors resulted from actions at postsynaptic receptors. In aged monkeys, low doses of quinpirole continued to impair fine motor performance, but lost their ability to impair delayed response performance. The magnitude of cognitive improvement and the incidence of ''hallucinatory-like'' behaviors were also reduced in the aged animals, suggesting some loss of postsynaptic D2 receptor function, The pattern of results is consistent with the greater loss of DA from the PFC than from motor areas in aged monkey brain (Goldman-Rakic and Brown, 1981; Wenk et al., 1989), and indicates that DA depletion contributes significantly to age-related cognitive decline.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

1 初级视觉皮层功能,GABA系统功能在衰老过程中的变化 本章首先对衰老过程中神经形态学和神经电生理学上的研究进行了综述,然后报道了作者的博士学位论文研究工作。实验采用神经电生理的手段,探讨初级视觉皮层(primary visual cortex;V1)功能,以及GABA(gamma-aminobutyric acid)系统功能在衰老过程中的变化。 实验1和2均采用单细胞记录技术,检测了中年猴V1细胞的方位选择性、方向选择性、自发放和最大反应,并与年轻和老年猴进行对比;比较了年轻和老年猴V1细胞的感受野外周抑制能力。在实验3中,我们记录了年轻和中年大鼠在给予GABA直接或间接的激动剂,戊巴比妥钠或氯胺酮{通过拮抗NMDA(N-methyl-D-aspartate)受体}后,其皮层的EEG(electroencephalogram)活动,并分析与年龄相关的差异。结果如下: 实验1:中年猴V1细胞的方向选择性和自发放介于年轻猴和老年猴之间,而方位选择性和最大反应与年龄之间没有相关性。 实验2:感受野外周区的最优刺激明显降低了年轻和老年猴具有高方位选择性细胞的比例。同时,年轻猴所有细胞,以及老年猴高方位选择性细胞具有较高的最大抑制比,与它们相比,老年猴无明显方位偏好细胞的最大抑制比显著降低; 实验3:戊巴比妥钠注射后,在年轻和中年大鼠上,alpha (8-12 Hz) 和beta (12-20 Hz) 频段EEG功率增加,theta (4-8 Hz) 功率减少,这些变化在中年大鼠上较为明显。氯胺酮注射后,中年大鼠theta功率比年轻大鼠具有更大幅度的降低。 我们的结果表明,视觉皮层功能的下调在衰老早期就已发生,其机制可能与抑制系统功能普遍降低有关. 2 奖赏机制,极低频磁场的生物学效应研究 本章首先对自然奖赏和药物成瘾机制、极低频磁场生物学效应,以及极低频磁场对奖赏系统的影响进行了综述,然后报道了作者的博士论文研究工作。实验目的是探讨大鼠眶额叶皮质(orbitofrontal cortex;OFC)活动与食物奖赏刺激的相关性,以及极低频磁场对小鼠空间认知能力的影响。 实验1采用EEG记录技术,检测了大鼠OFC在食物奖赏和渴求过程中EEG各频段的功率变化。在实验2中,使用了一种探索型Y-迷宫实验范式,它仅依赖于啮齿类动物天生的探索欲望,避免了奖赏效应的干扰,利用此新型迷宫,我们检测了25和50 Hz磁场对小鼠空间识别记忆能力的影响。其结果如下: 实验1:大鼠OFC的delta频段(2-4 Hz)EEG活动与食物刺激显著相关,其相对功率在食物渴求时下降,在食物奖赏时升高。 实验2:与短时照射相比,长时的50 Hz磁场照射降低了小鼠对新异臂的探索能力,而25和50 Hz磁场暴露都不影响小鼠的活动力。 本研究表明,食物奖赏与OFC的delta频段EEG活动密切相关,而我们以前发现,大鼠和猴OFC的gamma(20-100 Hz)活动与吗啡成瘾相关,提示了OFC在自然奖赏和药物成瘾中具有不同的作用;另外,本实验首次证明,极低频磁场损害了小鼠不依赖于奖赏系统的空间认知能力,而我们先前发现,极低频磁场可以强化吗啡诱导的条件化位置偏好,从而说明极低频磁场对吗啡成瘾具有独特的生物学效应。

Relevância:

80.00% 80.00%

Publicador:

Resumo:

1.老年猴视皮层神经元对图形对比度的反应及潜伏期特征: 在正常衰老过程中人类的视觉功能受到严重影响,例如空间和时间对比度敏感性下降以及信息处理时间的延长。虽然部分视觉功能的退化与眼睛的光学系统老化有关,但是它并不能解释所有视觉功能的下降。此外,我们以前的研究和别人的研究结果都表明衰老过程中视觉中枢系统功能的改变可能是视觉功能下降的主要原因。因此,利用单位放电记录技术(single-unit recording technique),我们比较了年轻猕猴和老年猕猴的初级视觉皮层(primary visual cortex,又称V1)神经元对比度反应之间的差异,以及V1和内侧颞叶(medial temporal cortex,MT)视觉区神经元反应潜伏期及其变异性之间的差异。结果显示,与年轻猴相比,老年猴V1区神经元对比度敏感性降低,同时伴随着神经元活动信噪比下降;老年猴V1区和MT区神经元反应潜伏期及其变异性显著增加。然而,两个年龄组MT区神经元平均潜伏期之间差异小于V1区神经元平均潜伏期之间的差异,说明MT区神经元能够自我调整老化带来的影响。另外,两个年龄组V1区神经元潜伏期和变异性都具有正相关关系,但是MT区神经元则没有这种相关性。这些结果表明,在老化过程中皮层神经元的对比度和潜伏期反应特性发生了改变。我们推测这种改变可能与视觉皮层内抑制系统功能的降低有关,但是具体的分子机制和神经环路还不清楚。总之,本实验的研究结果为更好的理解老年人在视觉信息处理中时间和空间对比度敏感性及处理速度下降提供了新线索。2.极低频磁场对脑功能的影响及眶额叶认知功能的研究: 实验目的:(1)研究极低频磁场(20 Hz, 14 mT)照射对长期吗啡处理引起的大鼠背侧海马神经元多巴胺D2密度降低的影响;(2)小鼠青春期长期极低频磁场(50 Hz, 2 mT)照射对空间学习记忆的影响;(3)初步探讨了眶额叶在大鼠新异性探索行为中的作用。实验1,我们用免疫组化的方法检测了大鼠背侧海马神经元多巴胺D2受体密度的变化。结果显示,在长期吗啡处理后戒断早期背侧海马神经元多巴胺D2受体密度相对于对照组减少,磁场和吗啡共同作用会强化这种适应,但是这种变化很快恢复正常。这些结果表明长期吗啡处理会引起海马多巴胺系统产生适应;磁场强化了长期吗啡处理对背侧海马多巴胺系统的影响,这为我们先前发现磁场照射延缓了大鼠条件位置偏好消退的研究结果提供了一个内在神经基础。实验2,我们分别用Y-迷宫(two-trial Y-maze)和Morris水迷宫两种行为装置研究了青春期早期磁场暴露对小鼠短时空间识别记忆和长时空间参考记忆的影响。结果显示,磁场暴露并没有影响小鼠Y-迷宫作业,但是提高了水迷宫任务的学习以及记忆保持。这些结果表明磁场对空间记忆的影响是任务依赖性的。实验3,我们用旷场和Y-迷宫两种行为装置研究了眶额叶电损伤对大鼠新异性探索行为的影响。结果显示,眶额叶受损并没有影响大鼠的神经运动能力,但是降低了大鼠在旷场中的行走距离和直立次数以及降低了在Y-迷宫新异臂中的探索时间和穿梭次数。这些结果表明,眶额叶的完整性对大鼠探索新异环境行为是必要的,这可能与眶额叶参与记忆或行为决策功能有关。

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Since the 19th century, people have long believed that the function of cerebellum was restricted to fine motor control and modulation. In the past two decades, however, more and more studies challenged this traditional view. While the neuroanatomy of the cerebellum from cellular to system level has been well documented, the functions of this neural organ remain poorly understood. This study, including three experiments, attempted to further the understanding of cerebellar functions from different viewpoints. Experiment One used the parametric design to control motor effects. The activation in cerebellum was found to be associated with the difficulty levels of a semantic discrimination task, suggesting the involvement of the cerebellum in higher level of language functions. Moreover, activation of the right posterior cerebellum was found to co-vary with that of the frontal cortex. Experiment Two adopted the cue-go paradigm and event-related design to exclude the effects of phonological and semantic factors in a mental writing task. The results showed that bilateral anterior cerebellum and cerebral motor regions were significantly activated during the task and the hemodynamic response of the cerebellum was similar to those of the cerebral motor cortex. These results suggest that the cerebellum participates in motor imagination during orthographic output. Experiment Three investigated the learning process of a verb generation task. While both lateral and vermis cerebellum were found to be activation in the task, each was correlated a separate set of frontal regions. More importantly, activations both in the cerebellum and frontal cortex decreased with the repetition of the task. These results indicate that the cerebellum and frontal cortex is jointly engaged in some functions; each serves as a part of a single functional system. Taken these findings together, the following conclusions can be drawn: 1.The cerebellum is not only involved in functions related to speech or articulation, but also participates in the higher cognitive functions of language. 2.The cerebellum participates in various functions by supporting the corresponding regions in cerebral cortex, but not directly executes the functions as an independent module. 3.The anterior part of cerebellum is related to motor functions, whereas the posterior part is involved in cognitive functions. 4.While the motor functions rely on the engagement of both sides of the cerebellar hemispheres, the higher cognitive functions mainly depend on the right cerebellum.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

As a species of internal representation, how is mental imagery organized in the brain? There are two issues related to this question: the time course and the nature of mental imagery. On the nature of mental imagery, today's imagery debate is influenced by two opposing theories: (1) Pylyshyn’s propositional theory and (2) Kosslyn’s depictive representation theory. Behavioural studies indicated that imagery encodes properties of the physical world, such as the spacial and size information of the visual world. Neuroimaging and neuropsychological data indicated that sensory cortex; especially the primary sensory cortex, is involved in imagery. In visual modality, neuroimaging data further indicated that during visual imagery, spatial information is mapped in the primary visual, providing strong evidences for depictive theory. In the auditory modality, behavioural studies also indicated that auditory imagery represents loudness and pitch of sound; this kind of neuroimaging evidence, however, is absent. The aim of the present study was to investigate the time course of auditory imagery processing, and to provide the neuroimaging evidence that imaginal auditory representations encode loudness and pitch information, using the ERP method and a cue-imagery (S1)-S2 paradigm. The results revealed that imagery effects started with an enhancement of the P2, probably indexing the top-down allocation of attention to the imagery task; and continued into a more positive-going late positive potentials (LPC), probably reflecting the formation of auditory imagery. The amplitude of this LPC was inversely related to the pitch of the imagined sound, but directly related to the loudness of the imagined sound, which were consistent with auditory perception related N1 component, providing evidences that auditory imagery encodes pitch and loudness information. When the S2 showed difference in pitch of loudness from the previously imagined S1, the behavioral performance were significantly worse and accordingly a conflict related N2 was elicited; and the high conflict elicited greater N2 amplitude than low conflict condition, providing further evidences that imagery is analog of perception and can encode pitch and loudness information. The present study suggests that imagery starts with an mechanism of top-down allocation of attention to the imagery task; and continuing into the step of imagery formation during which the physical features of the imagined stimulus can be encoded, providing supports to Kosslyn’s depictive representation theory.