15 resultados para power factor correction
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
An three phase adjustable output voltage rectifier with constant power flow based on waveform gap patching principle is resented. By patching the gapes in the phase currents in parallel way as well as the ripple of the output voltage in series way, it implements the constant power flow from the three-phase line to the DC output without using any line frequency (and its harmonics) energy storage components. Principally, by treating only 22.4% power of the needed power output, this rectifier can supply constant power flow with adjustable output voltages without bring about any harmonic interferences to the power utility and achieve unite power factor.
Resumo:
The present work has been carried out to investigate on the average void fraction of gas/non-Newtonian fluids flow in downward inclined pipes. The influences of pipe inclination angle on the average void fraction were studied experimentally. A simple correlation, which incorporated the method of Vlachos et al. for gas/Newtonain fluid horizontal flow, the correction factor of Farooqi and Richardson and the pipe inclination angle, was proposed to predict the average void fraction of gas/non-Newtonian power-law stratified flow in downward inclined pipes. The correlation was based on 470 data points covering a wide range of flow rates for different systems at diverse angles. A good agreement was obtained between theory and data and the fitting results could describe the majority of the experimental data within ±20%.
Resumo:
Target transformation factor analysis was used to correct spectral interference in inductively coupled plasma atomic emission spectrometry (ICP-BES) for the determination of rare earth impurities in high purity thulium oxide. Data matrix was constructed with pure and mixture vectors and background vector. A method based on an error evaluation function was proposed to optimize the peak position, so the influence of the peak position shift in spectral scans on the determination was eliminated or reduced. Satisfactory results were obtained using factor analysis and the proposed peak position optimization method.
Resumo:
Correction of spectral overlap interference in inductively coupled plasma atomic emission spectrometry by factor analysis is attempted. For the spectral overlap of two known lines, a data matrix can be composed from one or two pure spectra and a spectrum of the mixture. The data matrix is decomposed into a spectra matrix and a concentration matrix by target transformation factor analysis. The component concentration of interest in a binary mixture is obtained from the concentration matrix and interference from the other component is eliminated. This method is applied to correcting spectral interference of yttrium on the determination of copper and aluminium: satisfactory results are obtained. This method may also be applied to correcting spectral overlap interference for more than two lines. Like other methods of correcting spectral interferences, factor analysis can only be used for additive spectral overlap. Results obtained from measurements on copper/yttrium mixtures with different white noise added show that random errors in measurement data do not significantly affect the results of the correction method.
Resumo:
In this work, a simple correlation, which incorporates the mixture velocity, drift velocity, and the correction factor of Farooqi and Richardson, was proposed to predict the void fraction of gas/non-Newtonian intermittent flow in upward inclined pipes. The correlation was based on 352 data points covering a wide range of flow rates for different CMC solutions at diverse angles. A good agreement was obtained between the predicted and experimental results. These results substantiated the general validity of the model presented for gas/non-Newtonian two-phase intermittent flows.
Resumo:
Fields in subwavelength-diameter terahertz hollow optical fiber (STHOF) can be intensified by large discontinuity of the electric field at high index contrast interfaces. The influences of fiber geometry and refractive index of the dielectric region on the fiber characteristics, such as power distribution, enhancement factor, have been discussed in detail. By appropriate design, the intensity in the central region of STHOF may be enhanced by a factor of greater than 1.5 compared with subwavelength-diameter terahertz fiber without the central hole and the loss can be reduced. For its compact structure and simple fabrication process, the fiber may be very useful in many miniaturized high performance and novel terahertz photonic devices. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
We developed a highly efficient diode side-pumped Nd:YAG ceramic laser with a diffusive reflector as an optical pump cavity. A maximum output power of 211.6W was obtained with an optical -to- optical conversion efficiency of 48.7%. This corresponds to the highest conversion efficiency in the side-pumped ceramic rod. Thermal effects of the Nd:YAG ceramic rod were analyzed in detail through the measurements of laser output powers and beam profiles near the critically unstable region. A M-2 beam quality factor of 18.7 was obtained at the maximum laser output power. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
The quality factors of modes in square resonators are calculated based on the far-field emission of the analytical field distribution. The obtained quality factors are in reasonable agreement with those calculated by the finite-difference time-domain (FDTD) technique and Pade approximation method. The emission power in the square diagonal directions for whispering-gallery-like modes in square resonators is zero due to the interference cancellation caused by the odd field distributions relative to the diagonal mirror planes, so they have larger quality factors than the modes with even field distribution.
Resumo:
Modes in rectangular resonators are analyzed and classified according to symmetry properties, and quality factor (Q-factor) enhancement due to mode coupling is observed. In the analysis, mode numbers p and q are used to denote the number of wave nodes in the direction of two orthogonal sides. The even and odd mode numbers correspond to symmetric and antisymmetric field distribution relative to the midlines of sides, respectively. Thus, the modes in a rectangle resonator can be divided into four classes according to the parity of p and q. Mode coupling between modes of different classes is forbidden; however, anti-crossing mode coupling between the modes in the same class exists and results in new modes due to the combination of the coupled modes. One of the combined modes has very low power loss and high Q-factor based on far-field emission of the analytical field distribution, which agrees well with the numerical results of the finite-difference time-domain (FDTD) simulation. Both the analytical and FDTD results show that the Q-factors of the high Q-factor combined modes are over one order larger than those of the original modes. Furthermore, the general condition required to achieve high-Q modes in the rectangular resonator is given based on the analytical solution.
Resumo:
A differential recursive scheme for suppression of Peak to average power ratio (PAPR) for Orthogonal frequency division multiplexing (OFDM) signal is proposed in this thesis. The pseudo-randomized modulating vector for the subcarrier series is differentially phase-encoded between successive components in frequency domain first, and recursion manipulates several samples of Inverse fast Fourier transformation (IFFT) output in time domain. Theoretical analysis and experimental result exhibit advantage of differential recursive scheme over direct output scheme in PAPR suppression. And the overall block diagram of the scheme is also given.
Resumo:
We derive formulas for the optical confinement factor Gamma from Maxwell's equations for TE and TM modes in the slab waveguide. The numerical results show that the formulas yield correct mode gain for the modes propagating in the waveguide. We also compare the formulas with the standard definition of Gamma as the ratio of power flow in the active region to the total power flow. The results show that the standard definition will underestimate the difference of optical confinement factors between TE and TM modes, and will underestimate the difference of material gains necessary for polarization insensitive semiconductor laser amplifiers. It is important to use correct optical confinement factors for designing polarization insensitive semiconductor laser amplifiers. For vertical cavity surface-emitting lasers, the numerical results show that Gamma can be defined as the proportion of the product of the refractive index and the squared electric field in the active region. (C) 1996 American Institute of physics.
Resumo:
A novel AIN monolithic microchannel cooled heatsink for high power laser diode array is introduced.The high power stack laser diode array with an AIN monolithic microchannel heatsink is fabricated and tested.The thermal impedance of a 10 stack laser diode array is 0.121℃/W.The pitch between two adjacent bars is 1.17mm.The power level of 611W is achieved under the 20% duty factor condition at an emission wavelength around 808nm.
Resumo:
The 940 nm Al-free active region laser diodes and bars with a broad waveguide were designed and fabricated. The stuctures were grown by metal organic chemical vapour deposition. The devices show excellent performances. The maximum output power of 6.7 W in the 100 f^m broad-area laser diodes has been measured, and is 2. 5 times higher than that in the Al-containing active region laser diodes with a narrow waveguide and 1. 7 times higher than that in Al-free active region laser diodes with a narrow waveguide. The 19 % fill-factor laser diode bars emit 33 W, and they can operate at 15W with low degradation rates.
Resumo:
For creep solids obeying the power law under tension proposed by Tabor, namely sigma = b(epsilon) over dot(m), it has been established through dimensional analysis that for self-similar indenters the load F versus indentation depth h can be expressed as F(t) = bh(2)(t)[(h) over dot(t)/h(t)](m)Pi(alpha) where the dimensionless factor Pi(alpha) depends on material parameters such as m and the indenter geometry. In this article, we show that by generalizing the Tabor power law to the general three dimensional case on the basis of isotropy, this factor can be calculated so that indentation test can be used to determine the material parameters b and m appearing in the original power law. Hence indentation test can replace tension test. This could be a distinct advantage for materials that come in the form of thin films, coatings or otherwise available only in small amounts. To facilitate application values of this constant are given in tabulated form for a range of material parameters. (C) 2010 Elsevier B.V. All rights reserved.