145 resultados para polycrystalline Si film

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have successfully prepared a high-quality 2 mu m-thick GaN film with three inserted 30 nm-thick ZnO interlayers on Si (111) substrate without cracks by magnetron sputtering. The effects of the thickness and number of ZnO interlayers on the crystal quality of the GaN films were studied. It was found that the GaN crystal quality initially improved with the increase of the thickness of ZnO interlayers, but deteriorated quickly when the thickness exceeded 30 nm. Multiple ZnO interlayers were used as an effective means to further improve the crystal quality of the GaN film. By increasing the number of interlayers up to three, the cracks can be constrained to a certain extent, and the crystal quality of the GaN film greatly improved. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An improved pulsed rapid thermal annealing (PRTA) has been used for the solid-phase crystallization (SPC) of a-Si films prepared by PECVD. The SPC can be completed with time-temperature budgets such as 10 cycles of 60-s 550 degrees C thermal bias/1-s 850 degrees C thermal pulse. The microstructure and surface morphology of the crystallized films are investigated by X-ray diffraction (XRD). The results indicate that this PRTA is a suitable post-crystallization technique for fabricating large-area poly-Si films on low-cost substrate. (C) 2000 Elsevier Science B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

GaAs epilayers grown on Si by metalorganic chemical vapor deposition (MOCVD) using an ultrathin a-Si buffer layer were characterized by deep-level transient spectroscopy (DLTS). Six electron traps with activation energies of 0.79, 0.67, 0.61, 0.55, 0.53 and 0.32 eV below the conduction band were determined by fitting the experimental spectra. Two of the levels, C (0.61 eV) and F (0.32 eV), were first detected in GaAs epilayers on Si and identified as the metastable defects M3 and M4, respectively. In order to improve the quality of GaAs/Si epilayers, another GaAs layer was grown on the GaAs/Si epilayers grown using MOCVD. The deep levels in this regrown GaAs epilayer were also studied using DLTS. Only the EL2 level was found in the regrown GaAs epilayers. These results show that the quality of the GaAs epilayer was greatly improved by applying this growth process.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report a novel technique for growing high-quality GaAs on Si substrate. The process involves deposition of a thin amorphous Si film prior to the conventional two-step growth. The GaAs layers grown on Si by this technique using metalorganic chemical vapor deposition exhibit a better surface morphology and higher crystallinity as compared to the samples gown by conventional two-step method. The full width at half maximum (FWHM) of the x-ray (004) rocking curve for 2.2 mu m thick GaAs/Si epilayer grown by using this new method is 160arcsec. The FWHM of the photoluminescence spectrum main peak for this sample is 2.1 meV. These are among the best results reported so far. In addition, the mechanism of this new growth method was studied using high-resolution transmission electron microscopy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recently, we reported successful growth of high-quality GaAs/Si epilayers by using a very thin amorphous Si film as buffer layer. In this paper, the impurity properties of this kind of GaAs/Si epilayers have been studied by using PL spectrum, SIMS and Hall measurement. Compared to a typical PL spectrum of the GaAs/Si epilayers grown by conventional two-step method, a new peak was observed in our PL spectrum at the energy of 1.462 eV, which is assigned to the band-to-silicon acceptor recombination. The SIMS analysis indicates that the silicon concentration in this kind of GaAs/Si epilayers is about 10(18) cm(-3). But its carrier concentration (about 4 x 10(17) cm(-3)) is lower than the silicon concentration. The lower carrier concentration in this kind of GaAs/Si epilayer can be interpreted both as the result of higher compensation and as the result of the formation of the donor-defect complex. We also found that the high-quality and low-Si-concentration GaAs/Si epilayers can be regrown by using this kind of GaAs/Si epilayer as substrate. The FWHM of the X-ray (004) rocking curve from this regrowth GaAs epilayer is 118 '', it is much less than that of the first growth GaAs epilayer (160 '') and other reports for the GaAs/Si epilayer grown by using conventional two-step method (similar to 200 '').

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tungsten wires were introduced into a plasma-enhanced chemical vapor deposition (PECVD) system as a catalyzer: we name this technique 'hot-wire-assisted PECVD' (HW-PECVD). Under constant deposition pressure (p(g)), gas flow ratio and catalyzer position, the effects of the hot wire temperature (T-f) on the structural properties of the poly-Si films have been characterized by X-ray diffraction (XRD), Raman scattering and Fourier-transform infrared (FTIR) spectroscopy. Compared with conventional PECVD, the grain size, crystalline volume fraction (X-e) and deposition rate were all enhanced when a high T-f was used. The best poly-Si film exhibits a preferential (220) orientation, with a full width at half-maximum (FWHM) of 0.2 degrees. The Si-Si TO peak of the Raman scattering spectrum is located at 519.8 cm(-1) with a FWHM of 7.1 cm(-1). The X-c is 0.93. These improvements are mainly the result of promotion of the dissociation of SiH4 and an increase in the atomic H concentration in the gas phase. (C) 2001 Elsevier Science B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tungsten wires were introduced into a plasma-enhanced chemical vapor deposition (PECVD) system as a catalyzer: we name this technique 'hot-wire-assisted PECVD' (HW-PECVD). Under constant deposition pressure (p(g)), gas flow ratio and catalyzer position, the effects of the hot wire temperature (T-f) on the structural properties of the poly-Si films have been characterized by X-ray diffraction (XRD), Raman scattering and Fourier-transform infrared (FTIR) spectroscopy. Compared with conventional PECVD, the grain size, crystalline volume fraction (X-e) and deposition rate were all enhanced when a high T-f was used. The best poly-Si film exhibits a preferential (220) orientation, with a full width at half-maximum (FWHM) of 0.2 degrees. The Si-Si TO peak of the Raman scattering spectrum is located at 519.8 cm(-1) with a FWHM of 7.1 cm(-1). The X-c is 0.93. These improvements are mainly the result of promotion of the dissociation of SiH4 and an increase in the atomic H concentration in the gas phase. (C) 2001 Elsevier Science B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Electrodeposition process of polycrystalline Cd-rich Hg_(1-z)Cd_xTe (x>0.5) in acidic bath of CdSO_4+HTeO_2~+HgCl_2 was investigated. The simultaneous electrodeposition technique of three kinds of ions at the same potential has been achieved. The XRD, SEM and EDAX analysis of the thin film electrodeposited on titanium substrate showed a typical cubic zinc blende polycrystalline structure and homogeneous dispersion. The photoelectrochemical behavior of (1-x)=0.09 polycrystalline thin film in a polysulfide re...

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The interface adhesion strength (or interface toughness) of a thin film/substrate system is often assessed by the micro-scratch test. For a brittle film material, the interface adhesion strength is easily obtained through measuring the scratch driving forces. However, to measure the interface adhesion strength (or interface toughness) for a metal thin film material (the ductile material) by the microscratch test is very difficult, because intense plastic deformation is involved and the problem is a three-dimensional elastic-plastic one. In the present research, using a double-cohesive zone model, the failure characteristics of the thin film/substrate system can be described and further simulated. For a steady-state scratching process, a three-dimensional elastic-plastic finite element method based on the double cohesive zone model is developed and adopted, and the steady-state fracture work of the total system is calculated. The parameter relations between the horizontal driving forces (or energy release rate of the scratching process) and the separation strength of thin film/substrate interface, and the material shear strength, as well as the material parameters are developed. Furthermore, a scratch experiment for the Al/Si film/substrate system is carried out and the failure mechanisms are explored. Finally, the prediction results are applied to a scratch experiment for the Pt/NiO material system given in the literature.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

用磁控溅射法制备了周期厚度和周期数均相同的Mo/Si多层膜,用原子力显微镜和小角X射线衍射分别研究了Mo靶溅射功率不相同时,Mo/Si多层膜表面形貌和晶相的变化。随后在国家同步辐射实验室测量了Mo/Si多层膜的软X射线反射率。研究发现,随着Mo靶溅射功率的增大,Mo/Si多层膜的表面粗糙度增加,Mo的特征X射线衍射峰也增强,Mo/Si多层膜的软X射线峰值反射率先增大后减小。

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Nano-crystalline Si/SiO2 multilayers were prepared by alternately changing the ultra-thin amorphous Si film deposition and the in situ plasma oxidation process followed by the post-annealing treatments. Well-defined periodic structures can be achieved with 2.5 nm thick SiO2 sublayers. It is shown that the size of formed nano-crystalline Si is about 3 nm. Room temperature electroluminescence can be observed and the spectrum contains two luminescence bands located at 650 nm and 520 nm. In order to improve the hole injection probability, p-i-n structures containing a nanocrystalline Si/SiO2 luminescent layer were designed and fabricated on different p-type substrates. It is found that the turn-on voltage of p-i-n structures is obviously reduced and the luminescence intensity increases by 50 times. It is demonstrated that the use of a heavy-doped p-type substrate can increase the luminescence intensity more efficiently compared with the light-doped p-type substrate due to the enhanced hole injection.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Microcrystalline silicon thin films at different growth stages were prepared by hot wire chemical vapor deposition. Atomic force microscopy has been applied to investigate the evolution of surface topography of these films. According to the fractal analysis I it was found that, the growth of Si film deposited on glass substrate is the zero-diffused stochastic deposition; while for the film on Si substrate, it is the finite diffused deposition on the initial growth stage, and transforms to the zero-diffused stochastic deposition when the film thickness reaches a certain value. The film thickness dependence of island density shows that a maximum of island density appears at the critical film thickness for both substrates. The data of Raman spectra approve that, on the glass substrate, the a-Si: H/mu c-Si:H transition is related to the critical film thickness. Different substrate materials directly affect the surface diffusion ability of radicals, resulting in the difference of growth modes on the earlier growth stage.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this paper, we report the fabrication of Si-based double-hetero-epitaxial silicon on insulator (SOI) structure Si/gamma-Al2O3/Si. Firstly, single crystalline gamma-Al2O3(100) insulator films were grown epitaxially on Si(100) using the sources of TMA (Al(CH3)(3)) and O-2 by very low-pressure chemical vapor deposition. Afterwards, Si(100) epitaxial films were grown on gamma-Al2O3 (100)/Si(100) epi-substrates using a chemical vapor deposition method similar to the silicon on sapphire epitaxial growth. The Si/gamma-Al2O3/Si SOL materials are characterized in detail by reflect high-energy electron diffraction, X-ray diffraction and Auger energy spectrum (AES) techniques. The insulator layer of gamma-Al2O3 has an excellent dielectric property. The leakage current is less than 1 x 10(-10) A/cm(2) when the electric field is below 1.3 MV/ cm. The Si film grown on gamma-Al2O3/Si epi-substrates was single crystalline. Meanwhile, the AES depth profile of the SOL structure shows that the composition of gamma-Al2O3 film is uniform, and the carbon contamination is not observed. Additionally, the gamma-Al2O3/Si epi-substrates are suitable candidates as a platform for a variety of active layers such as GaN, SiC and GeSi. It shows a bright future for microelectronic and optical electronics applications. (C) 2002 Elsevier Science B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Polycrystalline Si nanowires (poly SiNWS) were successfully synthesized by plasma-enhanced chemical vapor deposition (PECVD) at 440degreesC using silane as the Si source and Au as the catalyst. The diameters of Si nanowires range from 15 to 100nm. The growth process indicates that to fabricate SiNWS by PECVD, pre-annealing at high temperature is necessary. A few interesting nanowires with Au nanoclusters uniformly distributed in the body of the wire were also produced by this technique. (C) 2002 Elsevier Science B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A novel pulsed rapid thermal processing (PRTP) method has been used for realizing solid-phese crystallization of amorphous silicon films prepared by plasma-enhanced chemical vapour deposit ion. The microstructure and surface morphology of the crystallized films were investigated using x-ray diffraction and atomic Force microscopy. The results indicate that PRTP is a suitable post-crystallization technique for fabricating large-area polycrystalline silicon films with good structural quality, such as large grain size, small lattice microstrain and smooth surface morphology on low-cost glass substrates.