179 resultados para poly-L-histidine
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
A novel poly-l-arginine microcapsule was prepared due to its nutritional function and pharmacological efficacy. A high-voltage electrostatic droplet generator was used to make uniform microcapsules. The results show that the membrane strength and permeating property are both remarkably affected with the changes of sodium alginate concentration. With the sodium alginate concentration increasing, gel beads sizes increase from 233 mum to 350 mum, release ratio is also higher at the same time, but the membrane strength decreases.
Resumo:
Gelatin multilayers were assembled on PLLA substrate at pH 3, 5, and 7, which was below, around, and above the isoelectric point of the amphoteric polymer, using the layer-by-layer assembly technique. The multilayer deposition on the PLLA substrate was monitored by X-ray photoelectron spectroscopy (XPS) and water contact angle measurement. The XPS, water contact angle, and atomic force microscopy data indicated that the layer thickness, surface hydrophicity, and surface morphology of the gelatin multilayers assembled strongly depended on the pH at which the layers were deposited
Resumo:
Hyperbranched poly(amido amine)s containing vinyl and hydroxyl groups were successfully synthesized via Michael addition polymerization of triacrylamide (TT) and 3-amino-1,2-propanediol (APD) with equal molar ratio in feed. H-1, C-13 and HSQC NMR techniques were used to clarify the structure of hyperbranched polymers and polymerization mechanism.
Resumo:
The objective of this study was to evaluate degradation behavior and the feasibility of biodegradable polymeric stents in common bile duct (CBD) repair and reconstruction. Various molar ratios of lactide (LA) and glycolide (GA) in poly(L-lactide-co-glycolide) (PLGA) were synthesized and processed into a circular tubing of similar to 10.0 mm outer diameter and a wall thickness of about 2.0 mm.
Resumo:
Multilayer film of laccase, poly-L-lysine (PLL) and multi-walled carbon nanotubes (MWNTs) were prepared by a layer-by-layer self-assembly technique. The results of the UV-vis spectroscopy and scanning electron microscopy studies demonstrated a uniform growth of the multilayer. The catalytic behavior of the modified electrode was investigated. The (MWNTs/PLL/laccase)(n) multilayer modified electrode catalyzed four-electron reduction of O-2 to water, without any mediator.
Resumo:
Novel bioactive glass (13G) nanoparticles/poly(L-lactide) (PLLA) composites were prepared as promising bone-repairing materials. The BG nanoparticles (Si:P:Ca = 29:13:58 weight ratio) of about 40 run diameter were prepared via the sol-gel method. In order to improve the phase compatibility between the polymer and the inorganic phase, PLLA (M-n = 9700 Da) was linked to the surface of the BG particles by diisocyanate. The grafting ratio of PLLA was in the vicinity of 20 wt.%. The grafting modification could improve the tensile strength, tensile modulus and impact energy of the composites by increasing the phase compatibility.
Resumo:
This paper presented a new approach for preparing a new type of slow-release membrane-encapsulated urea fertilizer with starch-g-PLLA as biodegradable carrier materials. By solution-casting and washing rapidly with water the urea was individually encapsulated within the starch matrix modified by L-lactide through in situ graft-copolymerization.
Resumo:
A series of novel temperature- and pH-responsive graft copolymers, poly(L-glutamic acid)-g-poly(N-isopropylacrylamide), were synthesized by coupling amino-semitelechelic poly(N-isopropylacrylamide) with N-hydroxysuccinimide-activated poly(L-glutamic acid). The graft copolymers and their precursors were characterized, by ESI-FTICR Mass Spectrum, intrinsic viscosity measurements and proton nuclear magnetic resonance (H-1 NMR). The phase-transition and aggregation behaviors of the graft copolymers in aqueous solutions were investigated by the turbidity measurements and dynamic laser scattering.
Resumo:
A novel biodegradable diblock copolymer, poly(L-cysteine)-b-Poly(L-lactide) (PLC-b-PLLA), was synthesized by ring-opening polymerization (ROP) of N-carboxyanhydride of beta-benzyloxycarbonyl-L-Cysteine (ZLC-NCA) with amino-terminated Poly(L-lactide) (NH2-PLLA) as a macroinitiator in a convenient way. The diblock copolymer and its precursor were characterized by H-1 NMR, Fourier transform infrared (FT-IR), gel permeation chromatography (GPC), and X-ray photoelectron spectroscopy (XPS) measurements. The length of each block polymer could be tailored by molecular design and the ratios of feeding monomers.
Resumo:
Model protein bovine serum albumin (BSA) was covalently grafted onto poly[(L-lactide)co-carbonate] microsphere surfaces by "click chemistry." The grafting was confirmed by confocal laser scanning microscopy and X-ray photoelectron spectroscopy. The maximum amount of surface-grafted BSA was 45 mg.g(-1). The secondary structure of the grafted BSA was analyzed by FTIR and the results demonstrated that the grafting did not affect protein structure. This strategy can also be used on microspheres prepared from poly(L-lactide)/poly[(L-lactide)-co-carbonate] blend materials.
Resumo:
A diblcok copolymer monomethoxy poly (ethylene glycol)-block-poly(L-lactide-co-2-methyl-2-carboxyl-propylene carbonate) (MPEG-b-P(LA-co-MCC)) was obtained by copolymerization of L-lactide (LA) and 2-methyl-2-benzoxycarbonyl-propylene carbonate (MBC) and subsequent catalytic hydrogenation. The pendant carboxyl groups of the copolymer MPEG-b-P(LA-co-MCC) were conjugated with antitumor drug docetaxel and tripeptide arginine-glycine-aspartic acid (RGD), respectively.
Resumo:
RecA of Escherichia coli and its active nucleoprotein filaments with DNA are important for the genomic integrity and the genetic diversity. The formation of the DNA-RecA nucleoprotein filaments is a complex multiple-step process and can be affected by many factors. In this work, the effects of poly-L-lysine (PLL) on the DNA-RecA nucleoprotein filaments are investigated in vitro by agarose gel electrophoresis and atomic force microscopy (AFM). The observed morphologies vary with the concentration, the length, and the addition order of PLL. These distinctions provide information for the conformation change of DNA and the binding sites of RecA protein in the formation process of nucleoprotein filaments.