19 resultados para pillar
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Distinct Element Analysis on Propagation Characteristics of P-Wave in Rock Pillar with Finite length
Resumo:
以节理岩体等效刚度的概念为基础,讨论了离散元刚性块体模型中节理刚度的选取问题。采用面-面接触模型模拟了纵波在一维岩体中的传播,给出了纵波波形;研究了阻尼比、软弱夹层以及节理间是否可拉对波传播规律的影响。
Resumo:
We report the fabrication and the measurement of microcavities whose optical eigenmodes were discrete and were well predicted by using the model of the photonic dot with perfectly reflected sidewalls. These microcavities were consisted of the semiconductor pillar fabricated by the simple wet-etched process and successive metal coating. Angle-resolved photoluminescence spectra demonstrate the characteristic emission of the corresponding eigenmodes, as its pattern revealed by varying both polar (0) and azimuthal (45) angles. It is shown that the metal-coated sidewalls can provide an efficient way to suppress the emission due to the leaking modes in these pillar microcavities.
Resumo:
We propose a hybrid waveguide-plasmon system consisting of gold pillar arrays on top of a dielectric waveguide. The formation of extraordinary transmissions induced by the hybrid waveguide-plasmon resonances is investigated by rigorous coupled-wave analysis. The characteristics of the hybrid resonances can be predicted by introducing the photonic crystal slab theory. Extremely narrow absorption peaks and the electromagnetically induced transparency-like optical property are demonstrated in our hybrid system. (C) 2010 Optical Society of America
Resumo:
以节理岩体等效刚度的概念为基础,讨论了离散元刚性块体模型中节理刚度的选取问题。采用面-面接触模型模拟了纵波在一维岩体中的传播,给出了纵波波形;研究了阻尼比、软弱夹层以及节理间是否可拉对波传播规律的影响。
Resumo:
Recently, the size dependence of mechanical behaviors, particularly the yield strength and plastic deformation mode, of bulk metallic glasses (BMG) has created a great deal of interest. Contradicting conclusions have been drawn by different research groups, based on various experiments on different BMG systems. Based on in situ compression transmission electron microscopy (TEM) experiments on Zr41Ti14Cu12.5Ni10Be22.5 (Vit 1) nanopillars, this paper provides strong evidence that shear banding still prevails at specimen length scales as small as 150 nm in diameter. This is supported by in situ and ex situ images of shear bands, and by the carefully recorded displacement bursts under load control its well as load drops under displacement control. Finite element modeling of the stress state within the pillar shows that the unavoidable geometry constraints accompanying such experiments impart a strong effect on the experimental results, including non-uniform stress distributions and high level hydrostatic pressures. The seemingly improved compressive ductility is believed to be due to such geometry constraints. Observations underscore the notion that the mechanical behavior of metallic glasses, including strength and plastic deformation mode, is size independent at least in Vit 1. (C) 2009 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
A new transition prediction model is introduced, which couples the intermittency effect into the turbulence transport equations and takes the characteristics of fluid transition into consideration to mimic the exact process of transition. Test cases include a two-dimensional incompressible plate and a two-dimensional NACA0012 airfoil. Performance of this transition model for incompressible flows is studied, with numerical results consistent to experimental data. The requirement of grid resolution for this transition model is also studied.
Resumo:
Streptococcosis became an increasingly significant health problem in intensive aquaculture in China. Fifteen strains of Gram-positive, chain-forming coccus were isolated from moribund Amur sturgeon, Acipenser schrenckii, fanned with high density in central China. The coccoid microorganism was identified as Streptococcus dysgalactiae by means of physiological. biochemical properties and molecular analysis; furthermore, this coccus was confirmed as pathogen of sturgeon by challenge experiments and its infection potential on the cyprinid was also evaluated. To our knowledge, this was the first report of S. dysgalactiae linked to diseased A. schrenckii. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Six strains of Gram-positive, catalase-negative, non-motile, irregular short rod-shaped Weissella bacteria, with width and length of 0.5-0.6 and 1.2-2.7 mu m were isolated from diseased rainbow trout Oncorhynchus mykiss (Walbaum) in winter of 2007 at a commercial fishery in Jingmen, Hubei province, China. The diseased rainbow trout exhibited hemorrhage in eyes, anal region, intestine and abdomen wall, petechia of liver, some fish with hydrocele in stomach. Six isolates had identical biochemical reactions, phylogenetic analysis of 16S rDNA sequences, amplified ribosomal DNA restriction analysis (ARDRA), enzymatic profile analysis and antimicrobial susceptibility results, indicating as a single clonal outbreak. But all were different from any other validated twelve Weissella species in the term of physiological and biochemical characters. It is indicated that isolates are phylogenetically closer to Weissella halotolerans, Weissella viridescens and Weissella minor on 16S rDNA phylogenetic analysis result, than to W halotolerans and W viridescens on the result of ARDRA study and enzymatic profile analysis. Antimicrobial susceptibility testing was used to scan effective drugs for the therapy of this disease. Experimental infection assays with one isolate were conducted and pathogenicity (by intraperitoneal injection) was demonstrated in rainbow trout O. mykiss (Walbaum) and crucian carp (Carassius auratus gibelio) fingerlings. Because no Weissella was detected in fish feedstuffs and pond water, the source of this pathogen remains unknown, and Weissella isolates were regarded as an opportunistic pathogen for rainbow trout. This is the first report of Weissella strains which can cause disease of cultured fish in the world. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
A new method to fabricate nanoscale metallic air-bridges has been investigated. The pillar patterns of the air-bridge were defined on a SiO2, sacrificial layer by electron-beam lithography combined with inductively coupled plasma etching. Thereafter, the span (suspended part between the pillars) patterns were defined with a second electron-beam exposure on a PMMA/PMMA-MAA resist system. The fabrication process was completed by subsequent metal electron-beam evaporation, lift-off in acetone, and removal of the sacrificial layer in a buffered hydrofluoric (HF) solution. Air-bridges with two different geometries (line-shaped and cross-shaped) were studied in detail. The narrowest width of the air-bridges was around 200 nm, and the typical length of the air-bridges was 2-5 mu m. The advantages of our method are the simplicity of carrying out electron-beam exposure with good reproducibility and the capability of more accurate control of the pillar sizes and shapes of the air-bridge. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
We grow InN epilayers on different interlayers by metal organic vapour phase epitaxy (MOVPE) method, and investigate the effect of interlayer on the properties and growth mode of InN films. Three InN samples were deposited on nitrided sapphire, low-temperature InN (LT-InN) and high-temperature GaN (HT-GaN), respectively. The InN layer grown directly on nitrided sapphire owns the narrowest x-ray diffraction rocking curve (XRC) width of 300 arcsec among the three samples, and demonstrates a two-dimensional (2D) step-flow-like lateral growth mode, which is much different from the three-dimensional (3D) pillar-like growth mode of LT-InN and HT-GaN buffered samples. It seems that mismatch tensile strain is helpful for the lateral epitaxy of InN film, whereas compressive strain promotes the vertical growth of InN films.
Resumo:
Mode characteristics of three-dimensional (3-D) microsquare resonators are investigated by finite-difference time-domain (FDTD) simulation for the transverse electric (TE)-like and the transverse magnetic (TM)-like modes. For a pillar microsquare with a side length of 2 pin in air, we have Q-factors about 5 X. 103 for TM-like modes at the wavelength of 1550 run, which are one order larger than those of TE-like modes, as vertical refractive index distribution is 3.17/3.4/3.17 and the cororresponding center layer thickness is 0.2 mu m. The mode field patterns show that TM-like modes have much weaker vertical radiation coupling loss than TE-like modes. TM-like modes can have high Q-factors in a microsquare with weak vertical field confinement.
Resumo:
Electrically driven single photon source based on single InAs quantum dot (QDs) is demonstrated. The device contains InAs QDs within a planar cavity formed between a bottom AlGaAs/GaAs distributed Bragg reflector (DBR) and a surface GaAs-air interface. The device is characterized by I-V curve and electroluminescence, and a single sharp exciton emission line at 966nm is observed. Hanbury Brown and Twiss (HBT) correlation measurements demonstrate single photon emission with suppression of multiphoton emission to below 45% at 80K
Resumo:
A theoretical surface-state model of porous-silicon luminescence is proposed. The temperature effect on the PhotoLuminescence (PL) spectrum for pillar and spherical structures is considered, and it is found that the effect is dependent on the doping concentration, the excitation strength, and the shape and dimensions of the Si microstructure. The doping concentration has an effect on the PL intensity at high temperatures and the excitation strength has an effect on the PL intensity at low temperaturs. The variations of the PL intensity with temperature are different for the pillar and spherical structures. At low temperatures the PL intensity increases in the pillar structure, while in the spherical structure the PL intensity decreases as the temperature increases, at high temperatures the PL intensities have a maximum for both models. The temperature, at which the PL intensity reaches its maximum, depends on the doping concentration. The PL spectrum has a broader peak structure in the spherical structure than in the pillar structure. The theoretical results are in agreement with experimental results.
Resumo:
Funding and support for this project was provided by NSFC (Grant No. 40771015), and Key International Science and Technology Cooperation Projects (Grant No. 22007DFC20180). The authors also gratefully acknowledge the support of Key Projects in the National Science & Technology Pillar Program in the Eleventh Five-year Plan Period (Grant No. 2006BAD01B06-02). The authors thank the CDCs of Daqing, Beijing, Tianjin, Zhengzhou, Changsha and Shenzhen cities for field and laboratory technical support.
Resumo:
Plant traits and individual plant biomass allocation of 57 perennial herbaceous species, belonging to three common functional groups (forbs, grasses and sedges) at subalpine (3700 m ASL), alpine (4300 m ASL) and subnival (>= 5000 m ASL) sites were examined to test the hypothesis that at high altitudes, plants reduce the proportion of aboveground parts and allocate more biomass to belowground parts, especially storage organs, as altitude increases, so as to geminate and resist environmental stress. However, results indicate that some divergence in biomass allocation exists among organs. With increasing altitude, the mean fractions of total biomass allocated to aboveground parts decreased. The mean fractions of total biomass allocation to storage organs at the subalpine site (7%+/- 2% S.E.) were distinct from those at the alpine (23%+/- 6%) and subnival (21%+/- 6%) sites, while the proportions of green leaves at all altitudes remained almost constant. At 4300 m and 5000 m, the mean fractions of flower stems decreased by 45% and 41%, respectively, while fine roots increased by 86% and 102%, respectively. Specific leaf areas and leaf areas of forbs and grasses deceased with rising elevation, while sedges showed opposite trends. For all three functional groups, leaf area ratio and leaf area root mass ratio decreased, while fine root biomass increased at higher altitudes. Biomass allocation patterns of alpine plants were characterized by a reduction in aboveground reproductive organs and enlargement of fine roots, while the proportion of leaves remained stable. It was beneficial for high altitude plants to compensate carbon gain and nutrient uptake under low temperature and limited nutrients by stabilizing biomass investment to photosynthetic structures and increasing the absorption surface area of fine roots. In contrast to forbs and grasses that had high mycorrhizal infection, sedges had higher single leaf area and more root fraction, especially fine roots.