12 resultados para phosphorylcholine-substituded chitosans

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The values of k and alpha in the Mark-Houwink equation have been determined for chitosans with different degrees of deacetylation (DD) (69, 84, 91 and 100% respectively), in 0.2 M CH3COOH/0.1 M CH3COONa aqueous solution at 30-degrees-C by the light scattering method. It was shown that the values of alpha-decreased from 1.12 to 0.81 and the values of k increased from 0.104 x 10(-3) to 16.80 x 10(-3) ml/g, when the DD varied from 69 to 100%. This is due to a reduction of rigidity of the molecular chain and an increase of the electrostatic repulsion force of the ionic groups along the polyelectrolyte chain in chitosan solution, when the DD of chitosan increases gradually.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Various quaternized chitosans (QCSs) were synthesized according to previous method. Their reducing power and antioxidant potency against hydroxyl radicals ((OH)-O-center dot) and hydrogen peroxide (H2O2) were explored by the established systems in vitro. The QCSs exhibited markedly antioxidant activity, especially TCEDMCS, whose IC50 on hydroxyl radicals was 0.235 mg/mL. They showed 65-80% scavenging effect on hydrogen peroxide at a dose of 0.5 mg/mL. Generally, the antioxidant activity decreased in the order TCEDMCS > TBEDMCS > EDMCS > PDMCS > IBDMCS > Chitosan. Furthermore, the order of their (OH)-O-center dot and H2O2 scavenging activity was consistent with the electronegativity of different substituted groups in the QCSs. The QCSs showed much stronger antioxidant activity than that of chitosan may be due to the positive charge density of the nitrogen atoms in QCSs strengthened by the substituted groups. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The influence of molecular weight and substitution degree of sulfated polysaccharides on their biological activity is considered in majority of works involving the anticoagulant or antiviral properties of these substances. Therefore, the present paper describes the effect of preparation conditions of sulfated chitosans on their molecular weight and sulfur content, such as different reaction time, acid solvent and temperature. Foregoing literature expounded the action of dichloroacetic acid (DCAA) as acid solvent in homogeneous reaction. However, DCAA is expensive and noxious, therefore, in the present paper cheap and non-noxious formic acid (88%) was in place of DCAA. Furthermore, during reaction formic acid was not dehydrated. Under formic acid we obtained the satisfying results that was higher yield and equivalent sulfur contents compared to DCAA. IR and C-13 NMR spectrums proved the structure of the resultant obtained under formic acid or DCAA to be same. Now, it has not been reported for formic acid as acid solvent in homogeneous reaction of chitosan sulfatation. In this present paper, we also determined antioxidant activity of high-molecular weight and high-sulfate-content chitosans (HCTS). The results showed that HCTS could scavenge superoxide and hydroxyl radical. Its IC50 is 0.012 and 3.269 mg/mL, respectively. It had obviously reducing power and slight chelating activity. The data obtained in in vitro models clearly establish the antioxidant potency of HCTS. It is a potential antioxidant in vitro. (C) 2005 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the present paper microwave radiation has been used to introduce N-sulfo and O-sulfo groups into chitosan with a thigh degree of substitution and low-molecular weight. The sulfation of chitosan was performed in microwave ovens. It was found that microwave heating is a convenient way to obtain a wide range of products of different degrees of substitution and molecular weight only by changing reaction time or/and radiation power. Moreover, microwave radiation accelerated the degradation of sulfated chitosan, and the molecular weight of sulfated chitosan was considerably lower than that obtained by traditional heating. There are no differences in the chemical structure of sulfated chitosan obtained by microwave and by conventional technology. FTIR and C-13 NMR spectral analyses demonstrated that a significantly shorter time is required to obtain a satisfactory degree of substitution and molecular weight by microwave radiation than by conventional technology. In this present paper, we also determined antioxidant activity of low-molecular-weight and high-sulfate-content chitosans (LCTS). The results showed LCTS could scavenge superoxide and hydroxyl radical. Its IC50 is 0.025 and 1.32mg/mL, respectively. It is a potential antioxidant in vitro. (C) 2004 Published by Elsevier Ltd.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The structural changes of genomic DNA upon interaction with small molecules have been studied in real time using dual-polarization interferometry (DPI). Native or thermally denatured DNA was immobilized on the silicon oxynitride surface via a preadsorbed poly(ethylenimine) (PEI) layer. The mass loading was similar for both types of DNA, however, native DNA formed a looser and thicker layer due to its rigidity, unlike the more flexible denatured DNA, which mixed with PEI to form a denser and thinner layer. Ethidium bromide (EtBr), a classical intercalator, induced the large thickness decrease and density increase of native DNA (double-stranded), but a slight increase in both the thickness and density of denatured DNA (partial single-stranded).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Chitosan has shown its potential as a non-viral gene carrier and an adsorption enhancer for subsequent drug delivery to cells. These results showed that chitosan acted as a membrane perturbant. However, there is currently a lack of direct experimental evidence of this membrane perturbance effect, especially for chitosans with low molecular weight (LMW). In this report, the interaction between a lipid (didodecyl dimethylammonium bromide; DDAB) bilayer and chitosan with molecular weight (MW) of 4200 Da was studied with cyclic voltammetry (CV), electrochemical impedance spectroscopy and surface plasmon resonance (SPR). A lipid bilayer was formed by-fusion of oppositely charged lipid vesicles on a mercaptopropionic acid (MPA)-modified gold surface to mimic a cell membrane. The results showed that the LMW chitosan could disrupt the lipid bilayer, and the effect seemed,to be in a concentration-dependent manner.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The solution behavior of four chitosans (91% deacetylated chitin) with different molecular weights in 0.2M CH3COOH/0.1M CH3COONa aqueous solution was investigated at 25 degrees C by dynamic laser light scattering (LLS). The Laplace inversion of the precisely measured intensity-intensity time correlation function leads us to an estimate of the line-width distribution G(Gamma), which could be further reduced to a translational diffusion coefficient distribution G(D). By using a combination of static and dynamic LLS results, i.e. Mw and G(D), we were able to establish a calibration of D = k(D)M(-alpha D) with k(D) = (3.14 +/- 0.20) X 10(-4) and alpha(D) = 0.655 +/- 0.015. By using this calibration, we successfully converted G(D) into a molecular weight distribution f(w)(M). The larger alpha(D) value confirms that the chitosan chain is slightly extended in aqueous solution even in the presence of salts. This is mainly due to its backbone and polyelectrolytes nature. As a very sensitive technique, our dynamic LLS results also revealed that even in dilute solution chitosan still forms a small amount of larger sized aggregates that have ben overlooked in previous studies. The calibration obtained in this study will provide another way to characterize the molecular weight distribution of chitosan in aqueous solution at room temperature. (C) 1995 John Wiley & Sons, Inc.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

该文通过大量实验,确定了制备单糖、寡糖及低聚糖的最佳生产工艺,并对几种制备方法做了比较研究.该文采用氧化降解和微波降解等不同技术对甲壳低聚糖的制备工艺进行了研究.H<,2>O<,2>作为氧化剂,在酸性条件下,采用4因素3水平进行正交实验,得到了制备分子量2000以下的寡糖的最佳条件.微波降解制备低聚糖目前尚未见报道,经过该实验证明此方法可降低能耗,减小污染,节省时间和原料,是一个具有产业化前景和市场潜力的好方法.通过以不同的壳聚糖为原料,探讨了在微波场作用下纯溶剂及盐效应对分子量变化的影响,最终产物的分子量均在1×10<'5>~10×10<'5>之间.根据IR光谱,壳聚糖降解前后主要峰的位置都无变化,只是随壳聚糖相对分子质量的降低各峰峰强有所变化,证明了壳聚糖氧化降解及微波降解制备寡糖、低聚糖是以开裂壳聚糖的β-1.4糖苷键来进行.该项研究对更好的开发利用甲壳质资源,促进中国海洋生物制品的发展具有十分重要的意义.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Differently regioselective chitosan sulfates were prepared according to Hanno Baumann's methods. Their antioxidant potencies were investigated employing various established in vitro systems, such as 1,1-diphenyl-2-picrylhydrazyl (DPPH)/superoxide/hydroxyl radicals scavenging, reducing power, iron ion chelating and total antioxidant activity. All kinds of sulfated chitosans (HCTS, TSCTS, SCTS, TCTS) showed strong inhibitory activity toward superoxide radical by the PMS-NADH system compared to Vc. According to the above-mentioned order their IC50 were 0.012, 0.040, 0.015, 0.022mg/mL, respectively, however, scavenging activity of Vc on superoxide radical was 68.19% at 2.0mg/mL. Scavenging activity of superoxide radical was found to be in the order of HCTS > SCTS > TCTS > TSCTS > Vc. Furthermore, all kinds of sulfated chitosans exhibited strong concentration-dependent inhibition of deoxyribose oxidation. Except for HCTS, others had stronger scavenging activity on hydroxyl radical than Vc. Scavenging effect of TSCTS on 1, 1 -diphenyl-2-picrylhydrazy] radical was little lower than that of BHA, but better than that of others. All kinds of sulfated chitosans were efficient in the reducing power, especially TSCTS. TSCTS and TCTS showed considerable ferrous ion chelating potency. The data obtained in vitro models clearly establish the antioxidant potency of all kinds of sulfated chitosans. These in vitro results suggested the possibility that sulfated chitosans could be effectively employed as ingredient in health or functional food, to alleviate oxidative stress. However, comprehensive studies need to be conducted to ascertain the in vivo safety of sulfated chitosans in experimental animal models. (C) 2004 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The antioxidant potency of different molecular weight (DMW) chitosan and sulfated chitosan derivatives was investigated employing various established in vitro systems, such as superoxide (O-2(.-))/hydroxyl ((OH)-O-.) radicals scavenging, reducing power, iron ion chelating. As expected, we obtained several satisfying results, as follows: Firstly, low molecular weight chitosan had stronger scavenging effect on O-2(.-) and (OH)-O-. than high molecular weight chitosan. For example the O-2(.-) scavenging activity of low molecular weight chitosan (9 kDa) and high molecular weight chitosan (760 kDa) were 85.86 % and 35.50 % at 1.6 mg/mL, respectively. Secondly, comparing with DMW chitosan, DMW sulfated chitosans had the stronger inhibition effect on 0(2)(.-). At 0.05 mg/mL, the scavenging activity on O-2(.-) reached 86.26 %, for low molecular weight chitosan sulfate (9 kDa), but that of low molecular weight chitosan (9 kDa) was 85.86 % at 1.6 mg/mL. As concerning chitosan and sulfated chitosan of the same molecular weight, scavenging activities of sulfated chitosan on superoxide and hydroxyl radicals were more pronounced than that of chitosan. Thirdly, low molecular weight chitosan sulfate had more effective scavenging activity on 02 and (OH)-O-. than that of high molecular weight chitosan sulfate. Fourthly, DMW chitosans and sulfated chitosans were efficient in the reducing power, especially LCTS. Their orders were found to be LCTS > CTS4 > HCTS > CTS3 > CTS2 > CTS1 > CTS. Fifthly, CTS4 showed more considerable ferrous ion-chelating potency than others. Finally, the scavenging rate and reducing power of DMW chitosan and sulfated derivatives increased with their increasing concentration. Moreover, change of DMW sulfated chitosans was the most pronounced within the experimental concentration. However, chelating effect of DMW chitosans were not concentration dependent except for CTS4 and CTS1. (C) 2004 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Three new kinds of 1,3,5-thiadiazine-2-thi one derivatives of chitosan with two different molecular weight (SATTCS1, SATTCS2, TITTCS1, TITTCS2, CITTCS1 and CITTCS2) have been prepared. Their structures were characterized by IR spectroscopy. The substitution degree of derivatives calculated by elemental analyses was 0.47, 0.42, 0.41, 0.38, 0.41 and 0.36, respectively. The result shows that substitution degree of derivatives was higher with lower molecular weight. The antioxidant activity was studied using an established system, such as bydroxyl radical scavenging, superoxide radical scavenging and reducing power. Antioxidant activity of the 1,3,5-thiadiazine-2-thione derivatives of chitosan were stronger than that of chitosans and antioxiclant activity of low molecular weight derivatives were stronger than that of high molecular weight derivatives. It is a potential antioxidant in vitro. (c) 2007 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The antioxidant potency of high/low molecular weight quatemary chitosan derivatives was investigated employing various established systems in vitro, such as superoxide (O-2(center dot-)) and hydroxyl (center dot OH) radicals scavenging, reducing power and iron ion chelating. As expected, we obtained several satisfying results, as follow: firstly, low molecular weight quaternary chitosan had stronger scavenging effect on O-2(center dot-) and center dot OH than high molecular weight quaternary chitosan. Secondly, the reducing power of low molecular weight quaternary chitosan was more pronounced than that of high molecular weight quaternary chitosan. Thirdly, ferrous ion chelating potency were showed to increase first and decrease afterwards with increasing concentration for two kinds of quaternary chitosans, namely, they have not concentration-dependence. However, the scavenging rate and reducing power of high and low molecular weight quaternary chitosans increased with their increasing conc centrations, and hence were concentration-dependent. (c) 2007 Elsevier Masson SAS. All rights reserved.