71 resultados para phase conjugate wave
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
Nankai University
Resumo:
The application of a Michelson interferometer with a self-pumped phase-conjugate mirror to measure small vibration amplitudes of a rough surface is described. The distorted wave front of the light that is diffusely reflected from the rough surface is restored by phase conjugation to provide an interference signal with a high signal-to-noise ratio. The vibration amplitudes of a stainless-steel sample are measured with a precision of similar to 5 nm. (C) 2000 Optical Society of America OCIS codes: 120.3180, 190.5040, 120.7280.
Resumo:
在起偏器待测波片检偏器系统基础上提出一种四区域测量波片相位延迟量的方法。调整待测波片和检偏器的方位角,获得相应的四组光强值,通过线性运算得到待测波片的相位延迟量,完全消除了起偏器和检偏器不完全消光带来的误差。由于测量系统中不存在标准波片或其他相位调制元件,允许测量波长仅受偏振棱镜和探测器的限制,因此四区域法可适用于很大波长范围内的波片测量。以λ/4波片为例,理论分析了测量系统利用四区域测量法后的仪器误差为σ≤±3.49065×10-3rad(约0.2°),精度比原算法提高约1个数量级。实验验证了四区域法能有效提高系统精度。
Resumo:
Based on the phase-conjugate polarization interference between two one-photon processes. When the laser has broadband linewidth, the sum-frequency polarization beat (SFPB) signal shows the autocorrelation of SFPB exhibits hybrid radiation-matter detuning terahertz damping oscillation. As an attosecond ultrafast modulation process, it can be extended intrinsically to any sum-frequency of energy-levels. It hits been also found that the asymmetric behaviors of the polarization beat signals result from the unbalanced dispersion effects, (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Based on the phase-conjugate polarization interference between two two-photon processes, we obtained an analytic closed form for the second-order or fourth-order Markovian stochastic correlation of the four-level attosecond sum-frequency polarization beat (FASPB) in the extremely Doppler-broadened limit. The homodyne-detected FASPB signal is shown to be particularly sensitive to the statistical properties of the Markovian stochastic light fields with arbitrary bandwidth. The different roles of the amplitude fluctuations and the phase fluctuations can be understood physically in the time-domain picture. The field correlation has a weak influence on the FASPB signal when the laser has narrow bandwidth. In contrast, when the laser has broadband linewidth, the FASPB signal shows resonant-nonresonant cross-correlation, and drastic difference for three Markovian stochastic fields. The maxima of the two two-photon signals are shifted from zero time delay to the opposite direction, and the signal exhibits damping oscillation when the laser frequency is off-resonant from the two-photon transition. A Doppler-free precision in the measurement of the energy-level sum can be achieved with an arbitrary bandwidth. As an attosecond ultrafast modulation process, it can be extended intrinsically to any sum frequency of energy levels.
Resumo:
Based on the phase-conjugate polarization interference between two-pathway excitations, we obtained an analytic closed form for the second-order or fourth-order Markovian stochastic correlation of the V three-level sum-frequency polarization beat (SFPB) in attosecond scale. Novel interferometric oscillatory behavior is exposed in terms of radiation-radiation, radiation-matter, and matter-matter polarization beats. The phase-coherent control of the light beams in the SFPB is subtle. When the laser has broadband linewidth, the homodyne detected SFPB signal shows resonant-nonresonant cross correlation, a drastic difference for three Markovian stochastic fields, and the autocorrelation of the SFPB exhibits hybrid radiation-matter detuning terahertz damping oscillation. As an attosecond ultrafast modulation process, it can be extended intrinsically to any sum frequency of energy levels. It has been also found that the asymmetric behaviors of the polarization beat signals due to the unbalanced controllable dispersion effects between the two arms of interferometer do not affect the overall accuracy in case using the SFPB to measure the Doppler-free energy-level sum of two excited states.
Resumo:
Recording with both parallel and orthogonal linearly polarized lights, polarization holographic storage in genetic mutant BR-D96N film is reported with both transmission type geometry and reflection type geometry. Polarization properties of diffraction light and scattering light are discussed for two different cases, parallel polarization recording and orthogonal polarization recording. It shows that, compared with recording with parallel polarization lights, orthogonal polarization holography can separate the diffraction light from the scattering noise, therefore improving the signal-to-noise ratio. It also shows that, compared with reconstruction with reference light, reconstruction with phase conjugated wave of the reference light can improve the signal-to-noise ratio of the reconstructed diffraction image, and also the wave-front aberration of the object light introduced by irregular phase object in the optical pass-way can also be corrected effectively, which ensures that the reconstructed diffraction image has a better fidelity. The preliminary angle-multiplexed volume holographic storage multiplexed by transmission type geometry and reflection type geometry is demonstrated in the BR-D96N film. Experiment shows that there is no cross-talk between the two pages of images except for some scattering noises.
Resumo:
Based on the density functional theory, we systematically study the optical and electronic properties of the insulating dense sodium phase (Na-hp4) reported recently (Ma et al., 2009). The structure is found optically anisotropic. Through Bader analysis, we conclude that ionicity exists in the structure and becomes stronger with increasing pressure.
Resumo:
In this paper, the wave pattern characteristics of shock-induced two-phase nozzle Hows with the quiescent or moving dusty gas ahead of the incident-shock front has been investigated by using high-resolution numerical method. As compared with the corresponding results in single-phase nozzle flows of the pure gas, obvious differences between these two kinds of flows can be obtained.
Resumo:
In a A-type system employing a two-photon pump field, a four-wave mixing field can be generated simultaneously and, hence, a closed-loop system forms. We study theoretically the effect of the relative phase between the two incident fields on the generated four-wave mixing field and the electromagnetically induced transparency. It is found that the phase of the generated four-wave mixing field is the sum of the incident relative phase and a fixed phase that is irrelative to the incident relative phase. Hence, the total phase of the closed-loop system is independent of the incident relative phase. As a result, the incident relative phase has no effect on the electromagnetically induced transparency, which is different from the case of a A-type loop system closed by a third incident field. (c) 2005 Pleiades Publishing, Inc.
Resumo:
We investigate the carrier-wave Rabi flopping effects in an asymmetric semiparabolic semiconductor quantum well (QW) with few-cycle pulse. It is found that higher spectral components of few-cycle ultrashort pulses in the semiparabolic QW depend crucially on the carrier-envelope phase (CEP) of the few-cycle ultrashort pulses: continuum and distinct peaks can be achieved by controlling the CEP. Our results demonstrate that by adjusting the CEP of few-cycle ultrashort pulses, the intersubband dynamics in the asymmetric semiparabolic QW can be controlled in an ultrashort timescale with moderate laser intensity. (c) 2008 Optical Society of America.
Resumo:
We propose a novel highly sensitive wave front detection method for a quick check of a flat wave front by taking advantage of a non-zero-order pi phase plate that yields a non-zero-order diffraction pattern. When a light beam with a flat wave front illuminates a phase plate, the zero-order intensity is zero. When there is a slight distortion of the wave front, the zero-order intensity increases. The ratio of first-order intensity to that of zero-order intensity is used as the criterion with which to judge whether the wave front under test is flat, eliminating the influence of background light. Experimental results demonstrate that this method is efficient, robust, and cost-effective and should be highly interesting for a quick check of a flat wave front of a large-aperture laser beam and adaptive optical systems. (c) 2005 Optical Society of America.
Resumo:
We numerically investigate the main constrains for high efficiency wavelength conversion of differential phase-shift keying (DPSK) signals based on four-wave mixing (FWM) in highly nonlinear fiber (HNLF). Using multi-tone pump phase modulation techniques, high efficiency wavelength conversion of DPSK signals is achieved with the stimulated Brillouin scattering (SBS) effects effectively suppressed. Our analysis shows that there is a compromise between conversion efficiency and converted idler degradation. By optimizing the pump phase modulation configuration, the converted DPSK idler's degradation can be dramatically decreased through balancing SBS suppression and pump phase modulation degradation. Our simulation results also show that these multi-tone pump phase modulation techniques are more appropriate for the future high bit rate systems.
Resumo:
High-quality and high-resistivity GaN films were grown on (0001) sapphire face by metal-organic vapour phase epitaxy. To measure the surface acoustic wave properties accurately, we deposited metallized interdigital transducers on the GaN surface. The acoustic surface wave velocity and electromechanical coupling coefficient were measured, respectively, to be 5667 m/s and 1.9% by the pulse method.