117 resultados para parasitic oscillation
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
寄生振荡的存在使得放大器在信号光到达之前消耗了大量的反转粒子数,降低了放大器的激光增益和储能效率,严重地影响了激光放大器的性能,尤其对高功率激光放大器。在理论分析和实验研究的基础上,以Nd∶YAG晶体板条为例,用8条半导体激光阵列对晶体进行双侧抽运,研究了高功率激光放大器的寄生振荡现象,分析了板条晶体寄生振荡产生的原因,并详细比较了晶体在不同的抽运功率和表面处理下的放大效果,得到了2倍的单程放大,当输入能量为140 mJ时,获得了278 mJ的激光输出。
Resumo:
Multi-mode rate equations have been developed to investigate mode competition in high-power acousto-optically Q-switched planar waveguide lasers. The mode competition arises from coupling effects and temporal losses in the transform between guided modes and free-space propagation. Pulse-to-pulse instability and temporal beam distortions are enlarged by mode competition when the laser works in the multi-mode regime. The influence of parasitic oscillation is also discussed. A Nd:YAG planar waveguide laser has been established with a folded hybrid/unstable resonator. A maximum average power of 83 W with a beam propagation factor M-x(2) x M-y(2) = 1.2 x 1.4 is obtained. The theoretical simulation agrees well with the experimental observation. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
包边技术是提高大尺寸激光玻璃饱和增益系数的关键。为获得优质包边玻璃,以CuO和CuCl分别作为Cu2+的引入物质,采用传统的玻璃熔制方法,研究了Cu2+掺杂量和不同引入物质对P2O5-ZnO-Na2O体系玻璃形成区、析晶稳定性、物化性能以及吸收系数的影响。研究结果表明,CuO和CuCl都能增大P2O5-ZnO-Na2O体系的玻璃形成区、提高玻璃样品的析晶稳定性。玻璃样品的吸收系数随Cu2+掺杂浓度的增加而明显增大,当Cu2+掺杂摩尔分数达到6%时,样品在1053 nm处的吸收系数为59.46 cm-1,基
Resumo:
从理论上详细探讨了基质激光玻璃与包边玻璃的折射率匹配与剩余反射率的关系,并从实验上验证了折射率匹配越好,吸收系数与包边玻璃厚度的乘积越大,则剩余反射率越低,从而对激光放大器中寄生振荡的抑制越好,增益也就越高。
Resumo:
In order to investigate the characteristics of water wave induced liquefaction in highly saturated sand in vertical direction, a one-dimensional model of highly saturated sand to water pressure oscillation is presented based oil the two-phase continuous media theory. The development of the effective stresses and the liquefaction thickness are analyzed. It is shown that water pressure oscillating loading affects liquefaction severely and the developing rate of liquefaction increases with the decreasing of the sand strength or the increasing of the loading strength. It is shown also that there is obvious phase lag in the sand Column. If the sand permeability is non-uniform, the pore pressure and the strain rise sharply at which the smallest permeability occurs. This solution may explain Why the fracture occurs in the sand column in some conditions.
Resumo:
An unsteady and three-dimensional model of the floating-half-zone convection on the ground is studied by the direct numerical simulation for the medium of 10 cSt silicon oil, and the influence of the liquid bridge volume on the critical applied temperature difference is especially discussed. The marginal curves for the onset of oscillation are separated into two branches related, respectively, to the slender liquid bridge and the fat liquid bridge. The oscillatory features of the floating-half-zone convection are also discussed.
Resumo:
Thermal fatigue behavior is one of the foremost considerations in the design and operation of diesel engines. It is found that thermal fatigue is closely related to the temperature field and temperature fluctuation in the structure. In this paper, spatially shaped high power laser was introduced to simulate thermal loadings on the piston. The incident Gaussian beam was transformed into concentric multi-circular beam of specific intensity distribution with the help of diffractive optical element (DOE), and the transient temperature fields in the piston similar to those under working conditions could be achieved by setting up appropriate loading cycles. Simulation tests for typical thermal loading conditions, i.e., thermal high cycle fatigue (HCF) and thermal shock (or thermal low cycle fatigue, LCF) were carried out. Several important parameters that affect the transient temperature fields and/or temperature oscillations, including controlling mode, intensity distribution of shaped laser, laser power, temporal profile of laser pulse, heating time and cooling time in one thermal cycle, etc., were investigated and discussed. The results show that as a novel method, the shaped high power laser can simulate thermal loadings on pistons efficiently, and it is helpful in the study of thermal fatigue behavior in pistons. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
The onset of oscillation in the floating zone convection driven by the gradient of surface tension was experimentally studied, and discussions were concentrated on the influence of liquid bridge volume on the onset of oscillation. Distributions of critical applied temperature difference and frequency depending on the volume of the liquid bridge were obtained, and there was a gap range of liquid volume which separated the curve of marginal stability into two parts for fixed rod diameter and aspect ratio. The results imply that the volume of the liquid bridge is a sensitive critical parameter for the onset of oscillation. The implication on the instability is also discussed in the present paper.
Resumo:
The onset of oscillation in the floating zone convection driven by the gradient of surface tension was studied numerically for an unsteady and two-dimensional model, and studies were concentrated on the influence of liquid bridge volume on the onset of oscillation in comparison with the experimental results in the Paper I. The numerical results agree with the experimental ones presented in the previous paper, in which the distributions of critical applied temperature difference depending on the volume of liquid bridge and a gap range of liquid volume in marginal stability curve were obtained.
Resumo:
Free surface deformations of thermocapillary convection in a small liquid bridge of half floating-zone are studied in the present paper. The relative displacement and phase difference of free surface oscillation are experimentally studied, and the features of free surface oscillation for various applied temperature differences are obtained. It is discovered that there is a sort of surface waves having the character of small perturbation, and having a wave mode of unusually large amplitude in one corner region of the liquid bridge.
Resumo:
In this paper, we present an asymptotic method for the analysis of a class of strongly nonlinear oscillators, derive second-order approximate solutions to them expressed in terms of their amplitudes and phases, and obtain the equations governing the amplitudes and phases, by which the amplitudes of the corresponding limit cycles and their behaviour can be determined. As an example, we investigate the modified van der Pol oscillator and give the second-order approximate analytical solution of its limit cycle. The comparison with the numerical solutions shows that the two results agree well with each other.
Resumo:
For high-speed-flow lasers, the one-dimensional and first-order approximate treatment in[1] under approximation of geometrical optics is improved still within the scope of approx-imation of geometrical optics. The strict accurate results are obtained, and what is more,two- and three-dimensional treatments are done. Thus for two- and three-dimensional cases, thestable oscillation condition, the formulae of power output and analytical expression of modesunder approximation of geometrical optics (in terms of gain function) are derived. Accord-ing to the present theory, one-and two-dimensional calculations for the typical case of Gerry'sexperiment are presented. All the results coincide well with the experiment and are better thanthe results obtained in [1].In addition, the applicable scope of Lee's stable oscillation condition given by [1] is ex-panded; the condition for the approximation of gcometrical optics to be applied to mode con-structure in optical cavity is obtained for the first time and the difference between thiscondition and that for free space is also pointed out in the present work.
Resumo:
The dynamics and harmonics emission spectra due to electron oscillation driven by intense laser pulses have been investigated considering a single electron model. The spectral and angular distributions of the harmonics radiation are numerically analyzed and demonstrate significantly different characteristics from those of the low-intensity field case. Higher-order harmonic radiation is possible for a sufficiently intense driving laser pulse. A complex shifting and broadening structure of the spectrum is observed and analyzed for different polarization. For a realistic pulsed photon beam, the spectrum of the radiation is redshifted for backward radiation and blueshifted for forward radiation, and spectral broadening is noticed. This is due to the changes in the longitudinal velocity of the electron during the laser pulse. These effects are much more pronounced at higher laser intensities giving rise to even higher-order harmonics that eventually leads to a continuous spectrum. Numerical simulations have further shown that broadening of the high harmonic radiation can be limited by increasing the laser pulse width. The complex shifting and broadening of the spectra can be employed to characterize the ultrashort and ultraintense laser pulses and to study the ultrafast dynamics of the electrons. (c) 2006 American Institute of Physics.
Resumo:
The origin of beam disparity in emittance and betatron oscillation orbits, in and out of the polarization plane of the drive laser of laser-plasma accelerators, is explained in terms of betatron oscillations driven by the laser field. As trapped electrons accelerate, they move forward and interact with the laser pulse. For the bubble regime, a simple model is presented to describe this interaction in terms of a harmonic oscillator with a driving force from the laser and a restoring force from the plasma wake field. The resulting beam oscillations in the polarization plane, with period approximately the wavelength of the driving laser, increase emittance in that plane and cause microbunching of the beam. These effects are observed directly in 3D particle-in-cell simulations.
Resumo:
Rabi oscillation of the thin bulk semiconductor GaAs, which takes into account the effect of the local-field correction induced by the interacting excitons, is investigated by numerically solving the semiconductor Bloch equations. It is found, for a 2 pi few-cycle pulse excitation, that two incomplete Rabi-floppings emerge due to the competition between the Rabi frequency of the incident pulse and the internal-field matrices. Furthermore, for a sub-cycle 2 pi pulse excitation a complete Rabi-flopping can occur because of the absolute phase effect. We ascribe these characteristics of the Rabi oscillation to the renormalized Rabi frequency.