10 resultados para pacs: simulation techniques
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
Geological fluids exist in every geosphere of the Earth and play important roles in many processes of material transformations, energetic interchanges and geochemical interactions. To study the physicochemical properties and geochemical behaviors of geological fluids turn Girt to be one of the challenging issues in geosciences. Compared with conventional approaches of experiments and semi-theoretical modeling, computer simulation on molecular level shows its advantages on quantitative predictions of the physicochemical properties of geological fluids under extreme conditions and emerges as a promising approach to find the characteristics of geological fluids and their interactions in different geospheres of the Earth interior.This dissertation systematically discusses the physicochemical properties of typical geological fluids with state-of-the-art computer simulation techniques. The main results can be summarized as follows: (1) The experimental phase behaviors of the systems CH4-C2H6 and. CO2 have been successfully reproduced with Monte Carlo simulations. (2) Through comprehensive isothermal-isobaric molecular dynamics simulations, the PVT data of water hia^e been extended beyond experimental range to about 2000 K and 20 GPa and an improved equation of state for water has been established. (3) Based on extensive computer simulations, am optimized molecular potential for carbon dioxide have been proposed, this model is expected to predict different properties of carbon dioxide (volumetric properties, phase equilibria, heat of vaporization, structural and dynamical properties) with improved accuracies. (4) On the basis of the above researches of the end-members, a set of parameters for unlike interactions has been proposed by non-linear fitting to the ab initio potential surface of CO2-H2O and is superior to the common used mixing rule and the results of prior workers vs/Ith remarkable accuracies, then a number of simulations of the mixture have been carried out to generate data under high temperatures and pressures as an important complement to the limited experiments. (5) With molecular dynamics simulations, various structural, dynamical and thermodynamical properties of ionic solvations and associations have been oomprehensively analyzed, these results not only agree well with experimental data and first principle calculation results, but also reveal some new insights into the microscopic ionic solvation and association processes.
Resumo:
The direct simulation Monte Carlo (DSMC) method is a widely used approach for flow simulations having rarefied or nonequilibrium effects. It involves heavily to sample instantaneous values from prescribed distributions using random numbers. In this note, we briefly review the sampling techniques typically employed in the DSMC method and present two techniques to speedup related sampling processes. One technique is very efficient for sampling geometric locations of new particles and the other is useful for the Larsen-Borgnakke energy distribution.
Resumo:
In this paper, TASCflow3D is used to solve inner and outer 3D viscous incompressible turbulent flow (R-e = 5.6 X 10(6)) around axisymmetric body with duct. The governing equation is a RANS equation with standard k-epsilon turbulence model. The discrete method used is a finite volume method based on the finite element approach. In this method, the description of geometry is very flexible and at the same time important conservative properties are retained. The multi-block and algebraic multi-grid techniques are used for the convergence acceleration. Agreement between experimental results and calculation is good. It indicates that this novel approach can be used to simulate complex flow such as the interaction between rotor and stator or propulsion systems containing tip clearance and cavitation.
Resumo:
In this paper, TASCflow3D is used to solve inner and outer 3D viscous incompressible turbulent flow (R-e = 5.6 X 10(6)) around axisymmetric body with duct. The governing equation is a RANS equation with standard k-epsilon turbulence model. The discrete method used is a finite volume method based on the finite element approach. In this method, the description of geometry is very flexible and at the same time important conservative properties are retained. The multi-block and algebraic multi-grid techniques are used for the convergence acceleration. Agreement between experimental results and calculation is good. It indicates that this novel approach can be used to simulate complex flow such as the interaction between rotor and stator or propulsion systems containing tip clearance and cavitation.
Resumo:
In this paper, available elimination techniques are assessed. OLGA2000 software is used to simulate severe slugging formation mechanism in certain offshore riser. The simulation results show that pressure fluctuations of riser base and riser top is very large and severe slugging easily forms. Sensibility analysis shows that the measures and methods which include properly reducing pipe riser diameter, reducing water cut increasing terminal pressure, decreasing the height and inclination of riser and increasing GOR can eliminate or control severe slugging in riser pipe.
Resumo:
EQUILATERAL-TRIANGLE; MU-M; LASERS; MICROLASERS; MICRODISK Abstract: Mode characteristics for midinfrared microsquare resonators with sloped sidewalls and confined metal layers are investigated by finite-difference time-domain (FDTD) techniques. For a microsquare with a side length of 10 mu m, the mode quality (Q)-factors of 8329, 4772, and 2053 are obtained for TM5,7 mode at wavelength 7.1 mu m by three-dimensional FDTD simulations, as the tilting angles of the side walls are 90 degrees, 88 degrees, and 86 degrees, respectively. Furthermore, microsquare resonators laterally surrounded by SiO2 and metal layers are investigated by the two-dimensional FDTD technique for the metal layers of Au, Ti-Au, Ag-Au, and Ti-Ag-Au, respectively.
Resumo:
VSR4 links use graded index multimode fibers (GIMMFs) as the transmission medium with operation wavelength 850nm. For cost reasons, VCSEL has been selected as the optical source to VSR4. The minimum bandwidth specification for 62.5um GIMMF in VSR4 is only 400 MHz(.)km for over-filled-launch (OFL) condition. The distance of 300 meters is limited over transmission rates of 1.25Gbit/s on the basis of this specification. In order to overcome the OFL bandwidth limit by selective excitation of a limited number of modes, conditioned launch technique is investigated. In this paper, based on a comprehensive dispersion theory of GIMMF, a model is built to simulate the transmission of optical signal in GIMMFs and a comparison between OFL and conditioned launch is analyzed. The result can be the guidelines for the best choice of techniques for various LAN and interconnect systems also.
Numerical analysis of four-wave-mixing based multichannel wavelength conversion techniques in fibers
Resumo:
We numerically investigate four-wave-mixing (FWM) based multichannel wavelength conversion for amplitude-modulated signals, phase-modulated signals, together with mixed amplitude and phase modulated signals. This paper also discusses the influence of stimulated Brillouin scattering (SBS) effects on high-efficiency FWM-based wavelength conversion applications. Our simulation results show that DPSK signals are more suitable for FWM-based multichannel wavelength conversion because the OOK signals will suffer from the inevitable datapattern-dependent pump depletion. In future applications, when the modulation format is partially upgraded from OOK to DPSK, the influence of OOK signals on the updated DPSK signals must be considered when using multichannel wavelength conversion. This influence becomes severe with the increase of OOK channel number. It can be concluded that DPSK signals are more appropriate for both transmission and multichannel wavelength conversion,especially in long haul and high bit-rate system.
Resumo:
In this paper, to design a new preamplifier for optimum performances with charged-particle or heavy-ion detectors, the CMOS FET is implemented as a feedback capacitor C-fp, so that the entire system should be built only with MOSFET. This work is a revolution design because to realize an ASIC for a preamplifier circuit, the capacitor will also be included. We succeed after a simulation to maintain a rise time less than 3 ns, the output resistance less than 94 Omega and the linearity almost good.
Resumo:
The curing reaction process of epoxy-terminated poly(phenylene ether ketone) (E-PEK) with 4,4'-diaminodiphenyl sulfone (DDS) and hexahydrophthalic acid anhydride (Nadic) as curing agents was investigated using isothermal differential scanning calorimetry (IDSC) and nonisothermal differential scanning calorimetry (DDSC) techniques. It was found that the curing reactions of E-PEK/DDS and E-PEK/Nadic are nth-order reactions but not autoaccelerating. The experimental results revealed that the curing reaction kinetics parameters measured from IDSC and DDSC are not equivalent. This means that, in the curing reaction kinetics model for our E-PEK system, both isothermal and nonisothermal reaction kinetics parameters are needed to describe isothermal and nonisothermal curing processes, The isothermal and nonisothermal curing processes were successfully simulated using this model. A new extrapolation method was suggested. On the basis of this method the maximum extent of the curing reaction (A(ult)) that is able to reach a certain temperature can be predicted. The A(ult) for the E-PEK system estimated by the new method agrees well with the results obtained from another procedure reported in the literature. (C) 1997 John Wiley & Sons, Inc.