8 resultados para neutrophils
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
Cell adhesion, mediated by specific receptor-ligand interactions, plays an important role in biological processes such as tumor metastasis and inflammatory cascade. For example, interactions between beta(2)-integrin ( lymphocyte function-associated antigen-1 and/or Mac-1) on polymorphonuclear neutrophils (PMNs) and ICAM-1 on melanoma cells initiate the bindings of melanoma cells to PMNs within the tumor microenvironment in blood flow, which in turn activate PMN-melanoma cell aggregation in a near-wall region of the vascular endothelium, therefore enhancing subsequent extravasation of melanoma cells in the microcirculations. Kinetics of integrin-ligand bindings in a shear flow is the determinant of such a process, which has not been well understood. In the present study, interactions of PMNs with WM9 melanoma cells were investigated to quantify the kinetics of beta(2)-integrin and ICAM-1 bindings using a cone-plate viscometer that generates a linear shear flow combined with a two-color flow cytometry technique. Aggregation fractions exhibited a transition phase where it first increased before 60 s and then decreased with shear durations. Melanoma-PMN aggregation was also found to be inversely correlated with the shear rate. A previously developed probabilistic model was modified to predict the time dependence of aggregation fractions at different shear rates and medium viscosities. Kinetic parameters of beta(2)-integrin and ICAM-1 bindings were obtained by individual or global fittings, which were comparable to respectively published values. These findings provide new quantitative understanding of the biophysical basis of leukocyte-tumor cell interactions mediated by specific receptor-ligand interactions under shear flow conditions.
Resumo:
Human neutrophils are a type of white blood cell, which forms an early line of defense against bacterial infections. Neutrophils are highly responsive to the chemokine, interleukin-8 (IL-8) due to the abundant distribution of CXCR1, one of the IL-8 receptors on the neutrophil cell surface. As a member of the GPCR family, CXCR1 plays a crucial role in the IL-8 signal transduction pathway in neutrophils. We sequenced the complete coding region of the CXCR1 gene in worldwide human populations and five representative nonhuman primate species. Our results indicate accelerated protein evolution in the human lineage, which was likely caused by Darwinian positive selection. The sliding window analysis and the codon-based neutrality test identified signatures of positive selection at the N-terminal ligand/receptor recognition domain of human CXCR1.
Resumo:
P-selectin, a 70-nm-long cellular adhesive molecule, possesses elastic and extensible properties when neutrophils roll over the activated endotheliam of blood vessel in inflammatory reaction. Transient formation and dissociation of P-selectin/ligand bond on applied force of blood flow induces the extension of P-selectin and relevant ligands. Steered molecular dynamics simulations were performed to stretch a single P-selectin construct consisting of a lectin (Lec) domain and an epithelial growth factor (EGF)-like domain, where P-selectin construct was forced to extend in water with pulling velocities of 0.005-0.05 nm/ps and with constant forces of 1000-2500 pN respectively. Resulting force-extension profiles exhibited a dual-peak pattern on various velocities, while both plateaus and shoulders appeared in the extension-time profiles on various forces. The force or extension profiles along stretching pathways were correlated to the conformational changes, suggesting that the structural collapses of P-selectin Lec/EGF domains were mainly attributed to the burst of hydrogen bonds within the major beta sheet of EGF domain and the disruptions of two hydrophobic cores of Lee domain. This work furthers the understanding of forced dissociation of P-selectin/ligand bond.
Resumo:
Mechanics and surface microtopology of the molecular carrier influence cell adhesion, but the mechanisms underlying these effects are not well understood. We used a micropipette adhesion frequency assay to quantify how the carrier stiffness and microtopology affected two-dimensional kinetics of interacting adhesion molecules on two apposing surfaces. Interactions of P-selectin with P-selectin glycoprotein ligand-1 (PSGL-1) were used to demonstrate such effects by presenting the molecules on three carrier systems: human red blood cells (RBCs), human promyelocytic leukemia HL-60 cells, and polystyrene beads. Stiffening the carrier alone or in cooperation with roughing the surface lowered the two-dimensional affinity of interacting molecules by reducing the forward rate but not the reverse rate, whereas softening the carrier and roughing the surface had opposing effects in affecting two-dimensional kinetics. In contrast, the soluble antibody bound with similar three-dimensional affinity to surface-anchored P-selectin or PSGL-1 constructs regardless of carrier stiffness and microtopology. These results demonstrate that the carrier stiffness and microtopology of a receptor influences its rate of encountering and binding a surface ligand but does not subsequently affect the stability of binding. This provides new insights into understanding the rolling and tethering mechanism of leukocytes onto endothelium in both physiological and pathological processes.
Resumo:
Two-dimensional (2D) kinetics of receptor-ligand interactions governs cell adhesion in many biological processes. While the dissociation kinetics of receptor-ligand bond is extensively investigated, the association kinetics has much less been quantified. Recently receptor-ligand interactions between two surfaces were investigated using a thermal fluctuation assay upon biomembrane force probe technique (Chen et al. in Biophys J 94:694-701, 2008). The regulating factors on association kinetics, however, are not well characterized. Here we developed an alternative thermal fluctuation assay using optical trap technique, which enables to visualize consecutive binding-unbinding transition and to quantify the impact of microbead diffusion on receptor-ligand binding. Three selectin constructs (sLs, sPs, and PLE) and their ligand P-selectin glycoprotein ligand 1 were used to conduct the measurements. It was indicated that bond formation was reduced by enhancing the diffusivity of selectin-coupled carrier, suggesting that carrier diffusion is crucial to determine receptor-ligand binding. It was also found that 2D forward rate predicted upon first-order kinetics was in the order of sPs > sLs > PLE and bond formation was history-dependent. These results further the understandings in regulating association kinetics of surface-bound receptor-ligand interactions.
Resumo:
In this report, recombinant interieukin-8 (rIL-8) was produced and its activity tested for the first time in fish. The rainbow trout rIL-8 was produced in Escherichia coli and purified using a 6xHis tag at the N-terminus. The rIL-8 induced a dose-dependent migration of head kidney leukocytes at concentrations from 0.1 to 10 ng/ml, with a peak response at 1 ng/ml. Trout rIL-8 also had a significant effect on superoxide production by head kidney cells, with maximal, activity at 0.1 and 1 ng/ml. When injected intraperitoneally into trout, rIL-8 had a clear effect on total leukocyte number in the peritoneal cavity, with increasing doses (up to 5 mu g) eliciting more cells. Of three leukocyte types distinguished, neutrophils were the dominant cell type, especially at higher rIL-8 concentrations. In contrast, the proportion of macrophages and lymphocytes decreased with rIL-8 administration, suggesting that they were not attracted at the same rate as neutrophils. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Rainbow trout fry (10 weeks post hatch) were immunized (injection or immersion) with sonicated formalin-killed trophonts of the fish parasitic ciliate Ichthyophthirius multifiliis. Challenge infections 22 days after immunization showed a relative protection represented by significantly fewer established parasites and lower prevalence in the immunized groups compared to the controls. Associations between the obtained protection and changes in differential leukocyte counts, haematocrit values, anti Ichthyophthirius multifiliis antibodies, mucous cell density and some epidermal cell markers were investigated. No changes in antibody titers, haematocrit values and mucous cell counts were associated with the response; however, a minor change in peripheral blood neutrophils and epidermal cell markers were found.
Resumo:
An in vitro assay was used to examine the effect of Bothriocephalus acheilognathi Yamaguti, 1934 (Cestoda: Pseudophyllidea) on the polarization response of pronephric leucocytes of carp, Cyprinus carpio. Leucocytes, isolated from naive, naturally-infected fish and carp injected intraperitoneally with cestode extracts, were exposed to parasite extracts (protein concentrations 0-10.0 mu g ml(-1)), for up to 24 h in the presence or absence of carp serum. In general, polarization responses of the pronephric leucocytes, primarily neutrophils and eosinophils, increased with incubation time although there was no significant difference in the response induced by the different protein concentrations. Differences in the polarization response were, however, observed in naive, naturally infected and injected fish and the cells responded differently in the presence and absence of carp serum. In the absence of carp serum the polarization response of pronephric leucocytes in vitro was significantly reduced with cells obtained from injected and naturally infected fish compared with those obtained from naive carp. This suppression of leucocyte migration was however reduced by the addition of carp serum to the in vitro system. The role of this interaction between the possible suppression of polarization induced by the parasite and stimulation by serum is discussed.