12 resultados para neurria lebesgue integragarritasuna edukia borel riemann

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

10.00% 10.00%

Publicador:

Resumo:

A global numerical model for shallow water flows on the cubed-sphere grid is proposed in this paper. The model is constructed by using the constrained interpolation profile/multi-moment finite volume method (CIP/MM FVM). Two kinds of moments, i.e. the point value (PV) and the volume-integrated average (VIA) are defined and independently updated in the present model by different numerical formulations. The Lax-Friedrichs upwind splitting is used to update the PV moment in terms of a derivative Riemann problem, and a finite volume formulation derived by integrating the governing equations over each mesh element is used to predict the VIA moment. The cubed-sphere grid is applied to get around the polar singularity and to obtain uniform grid spacing for a spherical geometry. Highly localized reconstruction in CIP/MM FVM is well suited for the cubed-sphere grid, especially in dealing with the discontinuity in the coordinates between different patches. The mass conservation is completely achieved over the whole globe. The numerical model has been verified by Williamson's standard test set for shallow water equation model on sphere. The results reveal that the present model is competitive to most existing ones. (C) 2008 Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A novel finite volume method has been presented to solve the shallow water equations. In addition to the volume-integrated average (VIA) for each mesh cell, the surface-integrated average (SIA) is also treated as the model variable and is independently predicted. The numerical reconstruction is conducted based on both the VIA and the SIA. Different approaches are used to update VIA and SIA separately. The SIA is updated by a semi-Lagrangian scheme in terms of the Riemann invariants of the shallow water equations, while the VIA is computed by a flux-based finite volume formulation and is thus exactly conserved. Numerical oscillation can be effectively avoided through the use of a non-oscillatory interpolation function. The numerical formulations for both SIA and VIA moments maintain exactly the balance between the fluxes and the source terms. 1D and 2D numerical formulations are validated with numerical experiments. Copyright (c) 2007 John Wiley & Sons, Ltd.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An infinite elastic solid containing a doubly periodic parallelogrammic array of cylindrical inclusions under longitudinal shear is studied. A rigorous and effective analytical method for exact solution is developed by using Eshelby's equivalent inclusion concept integrated with the new results from the doubly quasi-periodic Riemann boundary value problems. Numerical results show the dependence of the stress concentrations in such heterogeneous materials on the periodic microstructure parameters. The overall longitudinal shear modulus of composites with periodic distributed fibers is also studied. Several problems of practical importance, such as those of doubly periodic holes or rigid inclusions, singly periodic inclusions and single inclusion, are solved or resolved as special cases. The present method can provide benchmark results for other numerical and approximate methods. (C) 2003 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

采用控制金属材料宏观塑性流动的两个无量纲物理参数作为小参数,将一维弹/粘-塑性问题的解摄动展开,从而,求解非线性波动方程的问题可以转化成求解相应的齐次或非齐次电报方程的问题,用Laplace积分变换或级数展开技术首先得到零次精确解。然后,用Riemann函数方法可获得一次和高次摄动解。与非线性问题的数值解比较,在恒应力或恒速度边界条件下,一次摄动解给出了波动问题的良好近似。这就表明,摄动技术在研究一类广泛的弹/粘-塑波问题中是有效的。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The elastic plane problem of a rigid line inclusion between two dissimilar media was considered. By solving the Riemann-Hilbert problem, the closed-form solution was obtained and the stress distribution around the rigid line was investigated. It was found that the modulus of the singular behavior of the stress remains proportional to the inverse square root of the distance from the rigid line end, but the stresses possess a pronounced oscillatory character as in the case of an interfacial crack tip.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The elastic plane problem of collinear rigid lines under arbitrary loads is dealt with. Applying the Riemann-Schwarz symmetry principle integrated with the analysis of the singularity of complex stress functions, the general formulation is presented, and the closed-form solutions to several problems of practical importance are given, which include some published results as the special cases. Lastly the stress distribution in the immediate vicinity of the rigid line end is examined.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

《计算流体力学》是为高等院校和科研单位研究生撰写的“计算流体力学”课程的教科书。全书共分九章。前五章讲述了计算流体力学中的基本概念和基本方法。包括流体动力学的诸方程和模型方程及其数学性质、数值解的理论依据、基本计算方法和数值解的行为分析等。计算方法包含有空间离散方法、代数方程和非定常方程(包括时间离散)的求解方法。这里涉及到的离散方法有有限差分方法、有限体积方法、有限元方法和谱方法。这些都是已经成熟和具有普适性的方法。书中描述了构造这些方法的基本思想,重点是有限差分方法。书中的后四章是针对各种物理问题讲述计算方法。这里包含低速不可压和高速可压缩流体运动数值模拟的计算方法和网格生成技术。着重阐述了针对不同物理问题的特征对计算方法精度的要求,及构造不同计算方法的基本思想,且给出了一些简单物理问题的数值模拟结果,以证实计算方法的有效性。

目录

主要符号表
第一章 引论
1.1 计算流体力学及其特征
1.2 计算流体力学的发展
1.3 本书的目的和内容
参考文献
习题

第二章 流体力学方程及模型方程
2.1 流体力学基本方程
2.2 模型方程及其数学性质
2.3 双曲型方程组的初边值问题
2.4 Riemann间断解
参考文献
习题

第三章 偏微分方程的数值解法
3.1 有限差分法
3.2 偏微分方程的全离散
3.3 有限体积法
3.4 有限元方法
3.5 谱方法
参考文献
习题

第四章 高精度有限差分法及数值解的行为分析
4.1 模型方程及半离散化方程
4.2 高精度差分逼近式
4.3 数值解的精度及分辨率分析
4.4 数值解中的耗散效应与色散效应
4.5 数值解的群速度
4.6 数值解行为的进一步分析
4.7 时间离散的色散与耗散效应
参考文献
习题

第五章 代数方程的求解
5.1 Gauss消去法
5.2 标量追赶法
5.3 矩阵追赶法及LU分解法
5.4 迭代法求解代数方程
5.5 交替方向追赶法
5.6 非线性方程的求解
5.7 时间关系法及局部时间步长法
参考文献
习题

第六章 可压缩流体力学方程组的离散
6.1 一维流体力学方程及Jacobian系数矩阵的分裂
6.2 一维Euler方程的离散
6.3 Godunov间断分解法
6.4 Roe格式与Roe分解
6.5 多维问题的差分逼近
6.6 粘性项的差分逼近
参考文献
习题

第七章激波高分辨率差分格式
7.1 数值解中的非物理振荡
7.2 一阶TVD格式
7.3 二阶TVD格式
7.4 TVD格式在流体力学中的应用
7.5 MUSCL格式
7.6 其他类型的高分辨率格式
参考文献
习题

第八章 不可压Navier-Stokes方程的差分逼近
8.1 控制方程
8.2 求解定常N-S方程的人工压缩性方法
8.3 非定常原始变量N-S方程的求解
8.4 涡量-流函数法
参考文献
习题

第九章 网格技术
9.1 网格生成技术
9.2 非结构网格
9.3 基于非等距网格的有限差分法
习题
专业名词索引
外国人名译名对照表
Synopsis
Contents
作者简介

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A new high-order finite volume method based on local reconstruction is presented in this paper. The method, so-called the multi-moment constrained finite volume (MCV) method, uses the point values defined within single cell at equally spaced points as the model variables (or unknowns). The time evolution equations used to update the unknowns are derived from a set of constraint conditions imposed on multi kinds of moments, i.e. the cell-averaged value and the point-wise value of the state variable and its derivatives. The finite volume constraint on the cell-average guarantees the numerical conservativeness of the method. Most constraint conditions are imposed on the cell boundaries, where the numerical flux and its derivatives are solved as general Riemann problems. A multi-moment constrained Lagrange interpolation reconstruction for the demanded order of accuracy is constructed over single cell and converts the evolution equations of the moments to those of the unknowns. The presented method provides a general framework to construct efficient schemes of high orders. The basic formulations for hyperbolic conservation laws in 1- and 2D structured grids are detailed with the numerical results of widely used benchmark tests. (C) 2009 Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A novel and accurate finite volume method has been presented to solve the shallow water equations on unstructured grid in plane geometry. In addition to the volume integrated average (VIA moment) for each mesh cell, the point values (PV moment) defined on cell boundary are also treated as the model variables. The volume integrated average is updated via a finite volume formulation, and thus is numerically conserved, while the point value is computed by a point-wise Riemann solver. The cell-wise local interpolation reconstruction is built based on both the VIA and the PV moments, which results in a scheme of almost third order accuracy. Efforts have also been made to formulate the source term of the bottom topography in a way to balance the numerical flux function to satisfy the so-called C-property. The proposed numerical model is validated by numerical tests in comparison with other methods reported in the literature. (C) 2010 Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

时空守恒元-解元(CE/SE)方法是近十年来发展起来的一种新的数值算法,最早是由NASALewis研究中心的Chang及其合作者提出的,后来由张增产和王刚等人对该方法进行了改进。理论和实际计算都证明该算法有很高的精度,特别擅长于求解守恒型方程。但是目前该算法只有少数几个版本的格式,这是因为为了保证全局时空守恒,现有格式都采用了在时间方向上相互交错的网格,这就大大限制了格式的灵活性。为此,本文对CE/SE方法进行了改进,得到了一种基于正位网格的局部时空守恒格式(LSTC)。该格式在应用中变得更简洁,最重要的是为时空守恒格式的发展提供了新的思路。不仅如此,该格式还继承了CE/SE方法几乎所有的特点和优点:1.将时间和空间统一起来同等对待;2.把流场物理量及其空间导数作为独立未知量同时求解;3.在推广到多维时无需使用算子分裂或方向交替技术,是一种真正意义上的多维算法;4.捕捉激波不需要Riemann求解器,激波分辨率高,在间断处能有效抑制非物理振荡。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

QCD求和规则是强子物理中的一种非常有效的非微扰方法,它从流的算符乘积展开开始,引入算符乘积展开式的真空期望值,把微扰和非微扰效应分开处理:微扰效应包含在展开系数中,非微扰效应则由算符的真空凝聚值表示。然后利用色散关系,把算符乘积展开式的真空期望值与一个含有强子物理参数的色散积分联系起来,这样就能够计算有关强子的物理量。 本文首先系统介绍了QCD求和规则的基本原理、基本方法,然后结合Dominguez,Gend和Paver的工作[14],展开式保留了的算符d=4凝聚值,采用新的参数化渐近自由阈以下谱函数的方法:即根据文献[25],用实验上了解得比较清楚的两个共振态的贡献来参数化谱函数,计算了s夸克的质量,得到了在动量标度为1Gev时,s夸克的跑动质量为219MeV。在误差范围内,这是一个理论上可以接受的结果,本文计算得到的跑动质量的值能为考察动量转移为1GeV时的质量效应提供参考。 关键词:QCD求和规则 算符乘积展开 色散关系 Borel变换 夸克质