10 resultados para molecular receptors
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
AIM: To investigate the interaction between human CCR5 receptors (CCR5) and HIV-1 envelope glycoprotein gp120 (HIV-1 gp120) and HIV-1 receptor CD4 antigens (CD4). METHODS: The structurally con served regions (SCR) of human CCR5 was built by the SYBYL/Biopolymer module using the corresponding transmembrane (TM) domain of bacteriorhodopsin (bR) as the template. The coordinates for amino-ter minal residue sequence, and carboxyl-terminal residue sequence, extracellular and cytoplasmic loops were generated using LOOP SEARCH algorithm. Subsequently the structural model was merged into the complex with HIV-1 gp120 and CD4. RESULTS: Human CCR5 interacted with both an HIV-1 gp120 and CD4. The N-terminal residues (especially Met1 and Gln4) of human CCR5, contacted with CD4 residues, mainly 7Nith one span (56 - 59) of CD4 in electrostatic interaction and hydrogen-bonds. The binding sites of human CCR5 were buried in a hydrophobic center surrounded by a highly basic periphery. On the other hand, direct interatomic contacts were made between ? CCR5 residues and 6 gp120 amino-acid residues, which included van der Waals contacts, hydrophobic interaction, and hydrogen bonds. CONCLUSION: The interaction model should be helpful for rational design of novel anti-HIV drugs.
Resumo:
Formyl peptide receptors (FPRs) were observed to expand in rodents and were recently suggested as candidate vomeronasal chemosensory receptors. Since vomeronasal chemosensory receptors usually underwent positive selection and evolved concordantly with the vomeronasal organ (VNO) morphology, we surveyed FPRs in primates in which VNO morphology is greatly diverse and thus it would provide us a clearer view of VNO-FPRs evolution. By screening available primate genome sequences, we obtained the FPR repertoires in representative primate species. As a result, we did not find FPR family size expansion in primates. Further analyses showed no evolutionary force variance between primates with or without VNO structure, which indicated that there was no functional divergence among primates FPRs. Our results suggest that primates lack the VNO-specific FPRs and the FPR expansion is not a common phenomenon in mammals outside rodent lineage, regardless of VNO complexity.
Resumo:
Human neutrophils are a type of white blood cell, which forms an early line of defense against bacterial infections. Neutrophils are highly responsive to the chemokine, interleukin-8 (IL-8) due to the abundant distribution of CXCR1, one of the IL-8 receptors on the neutrophil cell surface. As a member of the GPCR family, CXCR1 plays a crucial role in the IL-8 signal transduction pathway in neutrophils. We sequenced the complete coding region of the CXCR1 gene in worldwide human populations and five representative nonhuman primate species. Our results indicate accelerated protein evolution in the human lineage, which was likely caused by Darwinian positive selection. The sliding window analysis and the codon-based neutrality test identified signatures of positive selection at the N-terminal ligand/receptor recognition domain of human CXCR1.
Resumo:
Gaining insight into the mechanisms of chemoreception in aphids is of primary importance for both integrative studies on the evolution of host plant specialization and applied research in pest control management because aphids rely on their sense of smell
Resumo:
Vascular endothelial growth factor (VEGF) plays an important role in normal and pathological angiogenesis. VEGF receptors (VEGFRs, including VEGFR-1, VEGFR-2, and VEGFR-3) and neuropilins (NRPs, including NRP-1 and NRF-2) are high-affinity receptors for V
Resumo:
The entry of human immunodeficiency virus (HIV) into cells depends on a sequential interaction of the gp120 envelope glycoprotein with the cellular receptors CD4 and members of the chemokine receptor family. The CC chemokine receptor CCR5 is such a receptor for several chemokines and a major coreceptor for the entry of R5 HIV type-1 (HIV-1) into cells. Although many studies focus on the interaction of CCR5 with HIV-1, the corresponding interaction sites in CCR5 and gp120 have not been matched. Here we used an approach combining protein structure modeling, docking and molecular dynamics simulation to build a series of structural models of the CCR5 in complexes with gp120 and CD4. Interactions such as hydrogen bonds, salt bridges and van der Waals contacts between CCR5 and gp120 were investigated. Three snapshots of CCR5-gp120-CD4 models revealed that the initial interactions of CCR5 with gp120 are involved in the negatively charged N-terminus (Nt) region of CCR5 and positively charged bridging sheet region of gp120. Further interactions occurred between extracellular loop2 (ECL2) of CCR5 and the base of V3 loop regions of gp120. These interactions may induce the conformational changes in gp120 and lead to the final entry of HIV into the cell. These results not only strongly support the two-step gp120-CCR5 binding mechanism, but also rationalize extensive biological data about the role of CCR5 in HIV-1 gp120 binding and entry, and may guide efforts to design novel inhibitors.
Resumo:
The chemokine receptor CCR5 is the receptor for several chemokines and major coreceptor for R5 human immunodeficiency virus type-1 strains entry into cell. Three-dimensional models of CCR5 were built by using homology modeling approach and 1 ns molecular dynamics (MD) simulation, because studies of site-directed mutagenesis and chimeric receptors have indicated that the N-terminus (Nt) and extracellular loops (ECLs) of CCR5 are important for ligands binding and viral fusion and entry, special attention was focused on disulfide bond function, conformational flexibility, hydrogen bonding, electrostatic interactions, and solvent-accessible surface area of Nt and ECLs of this protein part. We found that the extracellular segments of CCR5 formed a well-packet globular domain with complex interactions occurred between them in a majority of time of MID simulation, but Nt region could protrude from this domain sometimes. The disulfide bond Cys20-Cys269 is essential in controlling specific orientation of Nt region and maintaining conformational integrity of extracellular domain. RMS comparison analysis between conformers revealed the ECL1 of CCR5 stays relative rigid, whereas the ECL2 and Nt are rather flexible. Solvent-accessible surface area calculations indicated that the charged residues within Nt and ECL2 are often exposed to solvent. Integrating these results with available experimental data, a two-step gp120-CCR5 binding mechanism was proposed. The dynamic interaction of CCR5 extracellular domain with gp120 was emphasized. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Tumor necrosis factor receptors (TNFRs) are a superfamily of proteins characterized by the unique cysteine-rich domain (CRD) and their important roles in diverse physiological and pathological events such as inflammation, apoptosis, autoimmunity and organogenesis. The first member of the molluscan TNFR family, designated as CfTNFR, was identified from Zhikong scallop Chlamys farreri by expressed sequence tag (EST) and rapid amplification of cDNA ends (RACE) approaches. The full-length cDNA of CfTNFR was of 1334 bp, consisting of a 5' UTR of 17 bp, a 3'UTR of 69 by with a poly (A) tail, and an open reading frame (ORE) of 1248 by encoding a polypeptide of 415 amino acids with a theoretical isoelectric point of 8.33 and predicted molecular weight of 47.07 kDa. There were a signal peptide, a CRD, a transmembrane region and a death domain in the deduced amino acid sequence of CfTNFR, suggesting that it was a typical type 1 membrane protein. The high identities (22-40%) of CfTNFR with other TNFR superfamily members indicated that CfTNFR should be a member of TNFR superfamily, and moreover, it should be the first death domain-containing TNFR found in invertebrates. Phylogenetic analysis revealed that CfTNFR was closely related to TNFR-like proteins from Strongylocentrotus purpuratus, Drosophila melanogaster and Ciona intestinalis, and they formed a separate branch apart from vertebrate TNFRs. The spatial expression of CfTNFR transcripts in healthy and bacteria challenged scallops was examined by quantitative real-time PCR. CfTNFR transcripts could be detected in all tested tissues, including haemocytes, gonad, gill, mantle and hepatopancreas, and significantly up-regulated in the tissues of gonad, gill, mantle and hepatopancreas after Listonella anguillarum challenge, indicating that CfTNFR was constitutive and inducible acute-phase protein involved in immune defence. The present results suggested the existence of the TNFR-like molecules and TNF-TNFR system in low invertebrates, and provided new insights into the role of CfTNFR in scallop innate immune responses to invading microorganisms. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Toll-like receptors (TLRs) are an ancient family of pattern recognition receptors, which show homology with the Drosophila Toll protein and play key roles in detecting various non-self substances and then initiating and activating immune system. In this report, the full length of the first bivalve TLR (named as CfToll-1) is presented. CfToll-1 was originally identified as an EST (expressed sequence tag) fragment from a cDNA library of Zhikong scallop (Chlamys farreri). Its complete sequence was obtained by the construction of Genome Walker library and 5' RACE (rapid amplification of cDNA end) techniques. The full length cDNA of CfToll-1 consisted of 4308 nucleotides with a polyA tail, encoding a putative protein of 1198 amino acids with a 5' UTR (untranslated region) of 211 bp and a 3'UTR of 500 bp. The predicted amino acid sequence comprised an extracellular domain with a potential signal peptide, nineteen leucine-rich repeats (LRR), two LRR-C-terminal (LRRCT) motifs, and a LRR-N-terminal (LRRNT), followed by a transmembrane segment of 20 amino acids, and a cytoplasmic region of 138 amino acids containing the Toll/IL-1R domain (TIR). The deduced amino acid sequence of CfToll-1 was homologous to Drosophila melanogaster Tolls (DmTolls) with 23-35% similarity in the full length amino acids sequence and 30-54% in the TIR domain. Phylogenetic analysis of CfToll-1 with other known TLRs revealed that CfToll-1 was closely related to DmTolls. An analysis of the tissue-specific expression of the CfToll-1 gene by Real-time PCR showed that the transcripts were constitutively expressed in tissues of haemocyte, muscle, mantle, heart, gonad and gill. The temporal expressions of CfToll-1 in the mixed primary cultured haemocytes were observed after the haemocytes were treated with 1 mu g ml(-1) and 100 ng ml(-1) lipopolysaccharide (LPS), respectively. The expression of CfToll-1 was up-regulated and increased about 2-fold at 6 h with the treatment of 1 mu g ml(-1) LPS. The expression of CfToll-1 was down-regulated with the treatment of 100 ng ml(-1) LPS. The results indicated that the expression of CfToll-1 could be regulated by LPS, and this regulation was dose-dependent. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Peptidoglycan recognition protein (PGRP) specifically binds to peptidoglycan and plays a crucial role in the innate immune responses as a pattern recognition receptor (PRR). The cDNA of a short type PGRP was cloned from scallop Chlamys farreri (named CfPGRP-SI) by homology cloning with degenerate primers, and confirmed by virtual Northern blots. The full length of CfPGRP-SI cDNA was 1073 bp in length, including a 5 ' untranslated region (UTR) of 59 bp, a 3 ' UTR of 255 bp, and an open reading frame (ORF) of 759 bp encoding a polypeptide of 252 amino acids with an estimated molecular mass of 27.88 kDa and a predicted isoelectric point of 8.69. BLAST analysis revealed that CfPGRP-S1 shared high identities with other known PGRPs. A conserved PGRP domain and three zinc-binding sites were present at its C-terminus. The temporal expression of QPGRP-S1 gene in healthy, Vibrio anguillarum-challenged and Micrococcus lysodeikticus-challenged scallops was measured by RT-PCR analysis. The expression of CfPGRP-S1 was upregulated initially in the first 12 h or 24 h either by M. lysodeikticus or V. anguillarum challenge and reached the maximum level at 24 h or 36 h, then dropped progressively, and recovered to the original level as the stimulation decreased at 72 h. There was no significant difference between V. anguillarum and M. lysodeikticus challenge. The results indicated that the CfPGRP-S1 was a constitutive and inducible acute-phase protein which was involved in the immune response against bacterial infection. (c) 2007 Elsevier Ltd. All rights reserved.