49 resultados para mismatched uncertainties
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
要: We have recently proposed a generalized JKR model for non-slipping adhesive contact between two elastic spheres subjected to a pair of pulling forces and a mismatch strain (Chen, S., Gao, H., 2006c. Non-slipping adhesive contact between mismatched elastic spheres: a model of adhesion mediated deformation sensor. J. Mech. Phys. Solids 54, 1548-1567). Here we extend this model to adhesion between two mismatched elastic cylinders. The attention is focused on how the mismatch strain affects the contact area and the pull-off force. It is found that there exists a critical mismatch strain at which the contact spontaneously dissociates. The analysis suggests possible mechanisms by which mechanical deformation can affect binding between cells and molecules in biology.
Resumo:
Misfit defects in a 3C-SiC/Si (001) interface were investigated using a 200 kV high-resolution electron microscope with a point resolution of 0.194 nm. The [110] high-resolution electron microscopic images that do not directly reflect the crystal structure were transformed into the structure map through image deconvolution. Based on this analysis, four types of misfit dislocations at the 3C-SiC/Si (001) interface were determined. In turn, the strain relaxation mechanism was clarified through the generation of grow-in perfect misfit dislocations (including 90 degrees Lomer dislocations and 60 degrees shuffle dislocations) and 90 partial dislocations associated with stacking faults. (C) 2009 American Institute of Physics. [doi:10.1063/1.3234380]
Resumo:
A new method of measuring the thickness of GaN epilayers on sapphire (0 0 0 1) substrates by using double crystal X-ray diffraction was proposed. The ratio of the integrated intensity between the GaN epilayer and the sapphire substrate showed a linear relationship with the GaN epilayer thickness up to 2.12 mum. It is practical and convenient to measure the GaN epilayer thickness using this ratio, and can mostly eliminate the effect of the reabsorption, the extinction and other scattering factors of the GaN epilayers. (C) 2003 Elsevier Science B.V. All rights reserved.
Resumo:
We show that part of the reflectance difference resonance near the E-0 energy of ZnSe is due to the anisotropic in-plane strain in the ZnSe thin films, as films grown on three distinctly different substrates, GaAs, GaP, and ZnS, all show the resonance at the same energy. Such anisotropic strain induced resonance is predicted and also observed near the E-1/E-1+Delta(1) energies in ZnSe grown on GaAs. The theory also predicts that there should be no resonance due to strain at, the E-0+Delta(0) energy, which is consistent with experiments. The strain anisotropy is rather independent of the ZnSe layer thickness, or whether the film is strain relaxed. For ZnSe films with large lattice mismatch with substrates, the resonance at the E-1/E-1+Delta(1) energies is absent, very likely due to the poor crystalline quality of the 20 nm or so surface layer. (C) 2000 American Vacuum Society. [S0734-211X(00)05604-3].
Resumo:
InAs layers were grown on GaAs by molecular beam epitaxy (MBE) at substrate temperature 450 and 480 degrees C, and the surface morphology was studied with scanning electron microscopy (SEM). We have observed a high density of hexagonal deep pits for samples grown at 450 degrees C, however, the samples grown at 480 degrees C have smooth surface. The difference of morphology can be explained by different migration of cations which is temperature dependent. Cross-sectional transmission electron microscopy (XTEM) studies showed that the growth temperature also affect the distributions of threading dislocations in InAs layers because the motion of dislocations is kinetically limited at lower temperature. (C) 1998 Elsevier Science B.V. All rights reserved.
Resumo:
We show that part of the reflectance difference resonance near the E-0 energy of ZnSe is due to the anisotropic in-plane strain in the ZnSe thin films, as films grown on three distinctly different substrates, GaAs, GaP, and ZnS, all show the resonance at the same energy. Such anisotropic strain induced resonance is predicted and also observed near the E-1/E-1+Delta(1) energies in ZnSe grown on GaAs. The theory also predicts that there should be no resonance due to strain at, the E-0+Delta(0) energy, which is consistent with experiments. The strain anisotropy is rather independent of the ZnSe layer thickness, or whether the film is strain relaxed. For ZnSe films with large lattice mismatch with substrates, the resonance at the E-1/E-1+Delta(1) energies is absent, very likely due to the poor crystalline quality of the 20 nm or so surface layer. (C) 2000 American Vacuum Society. [S0734-211X(00)05604-3].
Resumo:
The forward scattering light (FSL) received by the detector can cause uncertainties in turbidity measurement of the coagulation rate of colloidal dispersion, and this effect becomes more significant for large particles. In this study, the effect of FSL is investigated on the basis of calculations using the T-matrix method, an exact technique for the computation of nonspherical scattering. The theoretical formulation and relevant numerical implementation for predicting the contribution of FSL in the turbidity measurement is presented. To quantitatively estimate the degree of the influence of FSL, an influence ratio comparing the contribution of FSL to the pure transmitted light in the turbidity measurement is introduced. The influence ratios evaluated under various parametric conditions and the relevant analyses provide a guideline for properly choosing particle size, measuring wavelength to minimize the effect of FSL in turbidity measurement of coagulation rate.
Resumo:
IEECAS SKLLQG
Resumo:
The large uncertainties in estimates of cropland area in China may have significant implications for major cross-cutting themes of global environmental change-food production and trade, water resources, and the carbon and nitrogen cycles. Many earlier studies have indicated significant under-reporting of cropland area in China from official agricultural census statistics datasets. Space-borne remote sensing analyses provide an alternative and independent approach for estimating cropland area in China. In this study, we report estimates of cropland area from the National Land Cover Dataset (NLCD-96) at the 1:100,000 scale, which was generated by a multi-year National Land Cover Project in China through visual interpretation and digitization of Landsat TM images acquired mostly in 1995 and 1996. We compared the NLCD-96 dataset to another land cover dataset at I-km spatial resolution (the IGBP DIScover dataset version 2.0), which was generated from monthly Advanced Very High Resolution Radiometer (AVHRR)-derived Normalized Difference Vegetation Index (NDVI) from April, 1992 to March, 1993. The data comparison highlighted the limitation and uncertainty of cropland area estimates from the DIScover dataset. (C) 2003 Elsevier Science B.V. All rights reserved.
Resumo:
The growth of highly lattice-mismatched InAs0.3Sb0.7 films on (100) GaAs Substrates by magnetron Sputtering has been investigated and even epitaxial lnAs(0.3)Sb(0.7) films have been successfully obtained. A strong effect of the growth conditions on the film structure was observed, revealing that there was a growth mechanism transition from three-dimensional nucleation growth to epitaxial layer-by-layer growth mode when increasing the substrate temperature. A qualitative explanation for that transition was proposed and the critical conditions for the epitaxial layer-by-layer growth mode were also discussed.
Resumo:
The structure of the inhibition patterns is important to the stimulated emission depletion (STED) microscopy. Usually, Laguerre-Gaussian (LG) beam and the central zero-intensity patterns created by inserting phase masks in Gaussian beams are used as the erase beam in STED microscopy. Aberration is generated when focusing beams through an interface between the media of the mismatched refractive indices. By use of the vectorial integral, the effects of such aberration on the shape of depletion patterns and the size of fluorescence emission spot in the STED microscopy are studied. Results are presented as a comparison between the aberration-free case and the aberrated cases. (C) 2009 Optical Society of America
Resumo:
Elevational and latitudinal patterns of species richness for birds and mammals were compared with human population density in relation to nature reserve designation in two areas of Yunnan Province, China. Results suggest that species richness is not the same for the two areas. In Gaoligongshan Region, species richness is inversely correlated with elevation and altitude, while reserve designation is positively correlated with elevation and latitude. In Jingdong County, reserve designations are positively correlated with elevation, but species richness shows no clear trends. In general, the present situation is strongly influenced by human activities. It appears that reserve designation is mismatched with species richness in Gaoligongshan Region, while there is a better fit between the two in Jingdong County. In both areas, however, it appeared that reserves were located primarily in order to reduce conflict with humans rather than to maximize conservation of biodiversity, probably because humans were responsible for forest-especially primary forest-destruction and degradation in the low-lying areas.
Resumo:
A diode-pumped Nd:GdVO4 laser mode-locked by a semiconductor saturable absorber and output coupler (SESAOC) is passively stabilized to suppress Q-switched mode-locking. A phase mismatched 131130 second-harmonic generation (SHG) crystal is used for passive stabilization. The continuous wave mode-locking (CWML) threshold is reduced and the pulse width is compressed. The pulse width is 6.5 ps as measured at the repetition rate of 128 MHz. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
Type II superlattices (SLs) short period InAs(4ML)/GaSb(8ML) were grown by molecular-beam epitaxy on lattice-mismatched GaAs substrates and on GaSb substrates. A smooth GaSb epilayer was formed on GaAs substrates by inserting mulit-buffer layers including an interfacial misfit mode AlSb quantum dot layer and AlSb/GaSb superlattices smooth layer. SLs grown on GaAs substrates (GaAs-based SLs) showed well-resolved satellite peaks in XRD. GaSb-based SLs with better structural quality and smoother surface showed strong photoluminescence at 2.55 mu m with a full width at half maximum (FWHM) of 20 meV, narrower than 31 meV of GaAs-based SLs. Inferior optical absorption of GaAs-based SL was observed in the range of 2-3 mu m. Photoresponse of GaSb-based SLs showed the cut-off wavelength at 2.6 mu m.