32 resultados para low intensity

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

60.00% 60.00%

Publicador:

Resumo:

A self-consistent theory of plasma response to a single laser beam is proposed. The driving pump is not viewed as invariant during its interaction with the plasmas. Its modulation by the plasmas has an obvious influence on the strength of the wakefield behind the pulse. This suggests that the compression of the low-intensity pulse by the plasmas might be a possible way to excite largae-amplitude wakefield. (C) 2003 American Institute of Physics.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The dynamics and harmonics emission spectra due to electron oscillation driven by intense laser pulses have been investigated considering a single electron model. The spectral and angular distributions of the harmonics radiation are numerically analyzed and demonstrate significantly different characteristics from those of the low-intensity field case. Higher-order harmonic radiation is possible for a sufficiently intense driving laser pulse. A complex shifting and broadening structure of the spectrum is observed and analyzed for different polarization. For a realistic pulsed photon beam, the spectrum of the radiation is redshifted for backward radiation and blueshifted for forward radiation, and spectral broadening is noticed. This is due to the changes in the longitudinal velocity of the electron during the laser pulse. These effects are much more pronounced at higher laser intensities giving rise to even higher-order harmonics that eventually leads to a continuous spectrum. Numerical simulations have further shown that broadening of the high harmonic radiation can be limited by increasing the laser pulse width. The complex shifting and broadening of the spectra can be employed to characterize the ultrashort and ultraintense laser pulses and to study the ultrafast dynamics of the electrons. (c) 2006 American Institute of Physics.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We investigate the ultrafast four-wave mixing (FWM) with two-color few-cycle ultrashort pulses propagating in a two-level polar molecule medium. It is found that the enhancement of FWM can be achieved even for low intensity pulses due to the effects of permanent dipole moments (PDM) in polar molecules. Moreover, the conversion efficiency of FWM can be controlled by the carrier-envelope phases (CEP) of two ultrashort pulses. (c) 2006 Optical Society of America

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We investigate the emission spectra of the semiconductor quantum well for few-cycle and sub-cycle pulse exciting. We find that Fano interference may induce third harmonic enhancement. Third harmonic enhancement varies with the magnitude and duration of the incident pulse, and may be enhanced by approximately one order of magnitude for the low intensity region of the sub-cycle incident pulse exciting.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We have theoretically investigated the phase shift of a probe field for a four-level atomic system interacting successively with two fields tuned near an EIT resonance of an atom, a microwave field, and a coupling field. It has been found that the phase of retrieved signal has been shifted due to the cross-phase modulation when the stored spin wave was disturbed by a microwave. Because of the low relaxation rates of the ground hyperfine state, our proposed technique can impart a large phase rotation onto the probe field with low absorption of retrieved field and very low intensity of the microwave field.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Raman spectroscopy was used to study the molecular structure of a series of selected rare earth (RE) silicate crystals including Y2SiO5 (YSO), LU2SiO5 (LSO), (Lu0.5Y0.5)(2)SiO5 (LYSO) and their ytterbium-doped samples. Raman spectra show resolved bands below 500 cm(-1) region assigned to the modes of SiO4 and oxygen vibrations. Multiple bands indicate the nonequivalence of the RE-O bonds and the lifting of the degeneracy of the RE ion vibration. Low intensity bands below 500 cm(-1) are an indication of impurities. The (SiO4)(4-) tetrahedra are characterized by bands near 200 cm(-1) which show a separation of the components of nu(4) and nu(2), in the 500-700 cm(-1) region which are attributed to the distorting bending vibration and in the 880-1000 cm(-1) region which are attributed to the symmetric and antisymmetric stretching vibrational modes. The majority of the bands in the 300-610 cm(-1) region of Re2SiO5 were found to arise from vibrations involving both Si and RE ions, indicating that there is considerable mixing of Si displacements with Si-O bending modes and RE-0 stretching modes. The Raman spectra of RE silicate crystals were analyzed in terms of the molecular structure of the crystals, which enabled separation of the bands attributed to distinct vibrational units. Copyright (C) 2007 John Wiley & Sons, Ltd.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

为适应在n、γ昆合脉冲辐射场中对低强度快脉冲y辐射测量的需要,近年国内新研制出实用型YAlO3:Ce(YAP:Ce)快响应无机闪烁晶体。我们使用脉冲线性电流大于1.5A的光电倍增管,分别配置这种晶体以及CeF3、NaI等晶体构成闪烁探测器,在放射性标准源场中,对晶体的相对探测能力进行测量。测量结果表明:国产新型YAP:Ce无机晶体对这1.25MeV射线的探测能力比同体积的CeF3平均高一个量级,是同体积NaI的40%左右;当晶体厚度小于2mm时,YAP:Ce与CeF2、NaI的输出比值分别大于16和44%,说明厚度越薄晶体的相对探测能力越强。

Relevância:

60.00% 60.00%

Publicador:

Resumo:

随着加速器束流诊断技术的不断发展,非拦截式束流测量方法及弱束流诊断技术在加速器领域被广泛应用。为了跟踪国际上加速器技术研究前沿,配合HIRFL改造,以满足CSR大科学工程对HIRFL束流品质及调束效率提出的更高要求,本论文开展了弱束流测量方法的研究和一种新型的非拦截式束流位置及剖面探测装置的研制。论文中简要概述了国际国内加速器束流诊断技术的发展现状以及非拦截式弱束流测量技术在加速器中的应用,调研了国际上研制的利用剩余气体获取束流参数的各种束诊设备,为开展本课题的研究奠定了理论基础;论文中重点论述了研制剩余气体束流剖面探测系统的工作原理,利用平行板电极形成的均匀电场收集束流与剩余气体分子碰撞时产生的剩余气体正离子,通过微通道板与连续型电阻阳极构成的位置灵敏探测器将剩余气体正离子放大、读出,最终获得束流位置及剖面等参数;详细介绍了剩余气体束流剖面测量系统的设计,包括机械装置和信号获取系统,机械部分主要由真空测量室、平行板式高压电极和位置灵敏探测器组成,获取系统由电荷灵敏前置放大器、主放大器、加法器、位置灵敏分析器、计算机多道分析系统及符合电路组成;最后给出了离线和在线测试实验分析结果。本论文主要基于剩余气体电离理论,以非拦截式束流探测技术为主导思想,从理论上分析了利用剩余气体测量束流位置及束流剖面的可行性,首次在国内加速器领域研制出剩余气体束流剖面探测装置,并将其应用于重离子加速器实验,初步实验结果证明系统设计结构合理,测量灵敏度,位置分辨及线性基本达到了系统设计要求。本课题的研究无论是对于HIRFL非拦截诊断技术的扩展,还是对于HIRFL-CSR束诊系统的发展都具有深远意义。

Relevância:

60.00% 60.00%

Publicador:

Resumo:

R-phycoerythrin was isolated and purified from a red alga, Polysiphonia urceolata Grev, using Streamline column combined with ion-exchange chromatography or hydroxyapatite chromatography. The purity of R-phycoerythrin isolated by Streamline column was up to 1.66 and the yield of R-phycoerythrin could be as high as 0.68 mg/g frozen P. urceolata. All the eluates from Streamline column were divided into two equivalent parts, respectively. One part was pumped into the ion-exchange column loaded with Q-Sepharose and the other was applied to the adsorption column loaded with hydroxyapatite. The purities of R-phycoerythrin purified using these two methods were both up to 3.26, more than 3.2 the commonly accepted criterion. The yield of purified R-phycoerythrin from the ion-exchange chromatography was 0.40 mg/g frozen P. urceolata and that from the hydroxyapatite chromatography could reach 0.34 mg/g frozen P. urceolata. The purified protein had three absorption peaks at 498, 535, and 565 nm and displayed a fluorescence maximum at 580 nm, which was consistent with the typical spectrum of R-phycoerythrin. The purified R-PE was also identified with electrophoresis. Only one single protein band appeared on native-PAGE with silver staining. SDS-PAGE demonstrated the presence of one 20 kDa major subunit, and one low intensity band corresponding to 33 kDa subunit. The results indicate that using the expanded bed adsorption combined with ion-exchange chromatography or hydroxyapatite chromatography, R-phycoerythrin can be purified from frozen P. urceolata on large scale. (c) 2006 Elsevier Inc. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Since 1988 growers of bay scallop Argopecten irradians in China have been experiencing mortality in their cultured stocks. Although poorly documented, mortality apparently began near Qingdao and has since spread to other areas of Shandong and Liaoning provinces. Samples of cultured scallops were collected from several growing areas in these provinces and analyzed by histological methods for pathogens. An unidentified haplosporidian parasite was observed in a high proportion of scallops from two of the stocks examined. Most infections were of low intensity, but one heavy infection was also observed. Only plasmodia stages were observed; they occurred intercellularly in connective tissues throughout the scallops. Plasmodia were spherical to oval, varied from 4.0 to 17.0 mu m in diameter and contained from 2 to 18 nuclei. Absence of spores prevented generic assignment of the parasite. The source and pathogenicity of the haplosporidian could not be assessed without additional research. No other microbial parasites (i.e. rickettsia-like, chlamydia-like or kidney coccidia) were observed in any of the scallops examined.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Rockmass movement due to mining steep metallic ore body is a considerable question in the surface movement and deformation issue caused by underground mining. Research on coal mining induced rockmass movement and its prediction problem have been performed for a long-term, and have achieved great progress at home and abroad. However, the rockmass movement caused by mining steep metal mine is distinctivly different from coal seam mining.. Existing surface movement laws and deformation prediction methods are not applicable to the rockmass movement caused by mining steep metal mine. So far the home and abroad research to this theory is presently at an early stage, and there isn’t mature theory or practical prediction method, which made a great impact on production. In this paper, the research object—Jinchuan nickel mine, which is typical steep metal mine, characterized by complex geological conditions, developed faults, cracked rockmass, high geostress, and prominent engineering stability problems. In addition, backfill mining method is used in the mine, the features of rockmass movement caused by this mining method are also different from other mining methods. In this paper, the laws of rock mass movement, deformation and destroy mechanism, and its prediction were analyzed based on the collection of data, detailed in-sit engineering geology survey, ground movement monitoring by GPS, theoretical analysis and numerical simulation. According to the GPS monitoring of ground surface movement, ground subsidence basin with apparent asymmetry is developing, the influence scope is larger in the upper faulted block than in the lower faulted block, and the center of ground movement is moving along the upper faulted block direction with increasing depth of mining. During the past half and seven years, the largest settlement has amounted to 1287.5mm, and corresponding horizontal displacement has amounted to 664.6mm. On the ground surface, two fissure belts show a fast-growing trend of closure. To sum up, mining steep metal mine with backfill method also exist the same serious problem of rockmass movement hazards. Fault, as a low intensity zone in rockmass, when it located within the region of mining influence, the change of potential energy mainly consumed in fault deformation associated with rockmass structure surface friction, which is the essence of displacement and stress barrier effects characterized by fault rupture zone. when steep fault located in the tensile deformation region incurred by underground excavation, no matter excavation in hangingwall or in footwall of the fault, there will be additional tensile stress on the vertical fault plane and decrease in the shear strength, and always showing characteristics of normal fault slip, which is the main reason of fault escarpment appeared on the ground surface. The No.14 shaft deformation and failure is triggered by fault activation, which showed with sidewall move, rupture, and break down features as the main form of a concentrated expression of fault effects. The size and orientation of principal stress in surrounding rock changed regularly with mining; therefore, roadway deformation and damage at different stages have different characteristics and distribution models. During the process of mining, low-intensity weak structures surface always showed the most obvious reaction, accompany with surface normal stress decrease and shear strength bring down, to some extent, occurred with relative slide and deformation. Meanwhile, the impact of mining is a relatively long process, making the structure surface effect of roadway deformation and damage more prominent than others under the influence of mining. Roadway surrounding rockmass deformation caused by the change of strain energy density field after excavation mainly belongs to elastic deformation, and the correspondented damage mainly belongs to brittle rupture, in this circumstance, surrounding rockmass will not appear large deformation. The large deformation of surrounding rockmass can only be the deformation associated with structure surface friction or the plastic deformation of itself, which mainly caused by the permanent self-weigh volume force,and long-term effect of mining led to the durability of this deformation Good pitting fill effect and supporting effect of backfill, as well as the friction of rockmass structure surface lead to obvious macro-rockmass movement with long-lag characteristics. In addition, the loss of original intensity and new structure surface arisen increased flexibility in rockmass and fill deformation in structure surface, which made the time required for rockmass potential energy translate into deformation work associated with plastic deformation and structure surface friction consumed much, and to a large extent, eliminated the time needed to do those plastic work during repeated mining, all of which are the fundamental reason of rockmass movement aftereffect more significant than before. Mining steep deposits in high tectonic stress area and in gravity stress area have different movement laws and deformation mechanism. The steep deposit, when the vertical size of the mining areas is smaller than the horizontal size of the orebody, no matter mining in gravity stress area or in high tectonic stress area, they have similar features of ground movement with mining horizontal orebody; contrarily, there will appear double settlement centers on the ground surface under the condition of mining in high tectonic stress area, while there will always be a single center under the other condition. Meanwhile the ground movement lever, scale of mining influence area and macro features of ground movement, deformation and fracture are also different from mining in gravity stress area, and the fundamental reason lies in the impact of orientation of the maximum principal stress on rock movement features in in-site rock stress field. When mining thick and steep deposit, the ground surface movement and deformation characteristic curves are significantly different from excavating the horizontal ore bed and thin steep deposit. According to the features of rockmass movement rate, the development process of mining-induced rockmass movement is divided into three stages: raising stage, steadily stage and gradually decay stage. Considering the actual exploitation situation, GPS monitoring results and macro-characteristics of surface movement, the current subsidence pattern of Jinchuan No.2 mine is in the early stage of development. Based on analysis of surface movement rate, surface subsidence rate increase rapidly when mining in double lever at the same time, and reach its peak until the exploitation model ended. When double lever mining translate into single, production decreased, surface subsidence rate suddenly start to reduce and maintain a relatively low value, and the largest subsidence center will slowly move along with the hangingwall ore body direction with increasing depth of mining, at the same time, the scope and extent of subsidence in footwall ore body will begin magnify, and a sub-settlement center will appear on ground surface, accompanied with the development and closure trend of ground fissure, the surrounding rockmass of shaft and roadway will be confronted to more frequent and severe deformation and failure, and which will have a negative impact on the overall stability of No.2 mine mining. On the premise of continuity of rockmass movement, gray system model can be used in ground rockmass movement prediction for good results. Under the condition of backfill mining step by step, the loose effect of compact status of the hard, broken rockmass led to lower energy release rate, although surrounding rockmass has high elastic energy, loose and damage occurred in the horizontal ore body, which made the mining process safety without any large geological hazards. During the period of mining the horizontal ore body to end, in view of its special “residual support role”, there will be no large scale rockmass movement hazards. Since ground surface movement mainly related to the intensity of mining speed and backfill effect, on the premise of constant mining speed, during the period of mining the horizontal ore body to end, the rate of ground surface rockmass movement and deformation won’t have sudden change.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To investigate the low temperature fatigue crack propagation behavior of offshore structural steel A131 under random ice loading, three ice failure modes that are commonly present in the Bohai Gulf are simulated according to the vibration stress responses induced by real ice loading. The test data are processed by a universal software FCPUSL developed on the basis of the theory of fatigue crack propagation and statistics. The fundamental parameter controlling the fatigue crack propagation induced by random ice loading is determined to be the amplitude root mean square stress intensity factor K-arm. The test results are presented on the crack propagation diagram where the crack growth rate da/dN is described as the function of K-arm. It is evident that the ice failure modes have great influence on the fatigue crack propagation behavior of the steel in ice-induced vibration. However, some of the experimental phenomena and test results are hard to be physically explained at present. The work in this paper is an initial attempt to investigate the cause of collapse of offshore structures due to ice loading.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Very-High-Cycle Fatigue (VHCF) is the phenomenon of fatigue damage and failure of metallic materials or structures subjected to 108 cycles of fatigue loading and beyond. This paper attempts to investigate the VHCF behavior and mechanism of a high strength low alloy steel (main composition: C-1% and Cr-1.5%; quenched at 1108K and tempered at 453K). The fractography of fatigue failure was observed by optical microscopy and scanning electron microscopy. The observations reveal that, for the number of cycles to fatigue failure between 106 and 4108 cycles, fatigue cracks almost initiated in the interior of specimen and originated at non-metallic inclusions. An “optical dark area” (ODA) around initiation site is observed when fatigue initiation from interior. ODA size increases with the decrease of fatigue stress, and becomes more roundness. Fracture mechanics analysis gives the stress intensity factor of ODA, which is nearly equivalent to the corresponding fatigue threshold of the test material. The results indicate that the fatigue life of specimens with crack origin at the interior of specimen is longer than that with crack origin at specimen surface. The experimental results and the fatigue mechanism were further analyzed in terms of fracture mechanics and fracture physics, suggesting that the primary propagation of fatigue crack within the fish-eye local region is the main characteristics of VHCF.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

By employing pump-probe back longitudinal diffractometry, the electron density and decay dynamics of a weak plasma channel created by a 1-KHz fs laser in air has been investigated. With ultrashort laser pulses of 50 fs and low energy of 0.6 mJ, we observe weak plasma channels with a length similar to 2 cm in air. An analytical reconstruction method of electron density has been analyzed, which is sensitive to the phase shift and channel size. The electron density in the weak plasma channel is extracted to be about 4x10(16) cm(-3). The diameters of the plasma channel and the filament are about 50 and 150 mu m, respectively, and the measurable electron density can be extended to less than 10(15) cm(-3). Moreover, a different time-frequency technique called linearly chirped longitudinal diffractometry is proposed to time-resolved investigate ultrafast ionization dynamics of laser-irradiated gas, laser interaction with cluster beam, etc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Red-shift conical emission (CE) is observed by femtosecond laser pulse propagating in BK7 at a low input power (compared to those input powers for generation of blue-shift CE). With the increasing input power the blue-shift CE begins to appear whereas the red-shift CE ring (902 nm in our experiment) disappears accompanied by the augment of the central white spot size synchronously. The disappearing of red-shift CE in our experiment is explained such that the increase of axial intensity is much higher than that of ring emission and the augment of the central white spot size with the increasing input laser power.