21 resultados para iron blood level
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
P>An 83-day growth trial was conducted using a flow-through system to examine the effects of different dietary iron levels on growth and hepatic iron concentration in juvenile gibel carp (Carassius auratus gibelio). Six purified diets supplemented with different levels of iron (0, 10, 30, 60, 100 and 200 mg kg(-1)) (as ferrous sulfate) were fed to triplicate groups of fish (initial weight 2.12 +/- 0.00 g per fish). The results showed that the addition of iron to the basal diet did not significantly affect the specific growth rate (SGR), feed efficiency (FE), survival, red blood cell amount (RBC), hemoglobin content (Hb), mean corpuscular volume (MCV), mean corpuscular hemoglobin (MCH) or mean corpuscular hemoglobin concentration (MCHC). Hepatic iron concentration and hematocrit (Hct) were significantly influenced by dietary iron level (P < 0.05). On the basis of the iron concentration for the maintenance of optimum hepatic iron concentration and Hct, it was concluded that the dietary iron concentration of juvenile gibel carp should be not less than 202 mg Fe kg(-1) diet.
Resumo:
Cell adhesion is crucial to many biological processes, such as inflammatory responses, tumor metastasis and thrombosis formation. Recently a commercial surface plasmon resonance (SPR)-based BIAcore biosensor has been extended to determine cell binding mediated by surface-bound biomolecular interactions. How such cell binding is quantitatively governed by kinetic rates and regulating factors, however, has been poorly understood. Here we developed a novel assay to determine the binding kinetics of surface-bound biomolecular interactions using a commercial BIAcore 3000 biosensor. Human red blood cells (RBCs) presenting blood group B antigen and CM5 chip bearing immobilized anti-B monoclonal antibody (mAb) were used to obtain the time courses of response unit, or sensorgrams, when flowing RBCs over the chip surface. A cellular kinetic model was proposed to correlate the sensorgrams with kinetic rates. Impacts of regulating factors, such as cell concentration, flow duration and rate, antibody-presenting level, as well as pH value and osmotic pressure of suspending medium were tested systematically, which imparted the confidence that the approach can be applied to kinetic measurements of cell adhesion mediated by surface-bound biomolecular interactions. These results provided a new insight into quantifying cell binding using a commercial SPR-based BIAcore biosensor.
Resumo:
In order to obtain the distribution rules of in situ stress and mining-induced stress of Beiminghe Iron Mine, the stress relief method by overcoring was used to measure the in situ stress, and the MC type bore-hole stress gauge was adopted to measure the mining-induced stress. In the in situ stress measuring, the technique of improved hollow inclusion cells was adopted, which can realize complete temperature compensation. Based on the measuring results, the distribution model of in situ stress was established and analyzed. The in situ stress measuring result shows that the maximum horizontal stress is 1.75-2.45 times of vertical stress and almost 1.83 times of the minimum horizontal stress in this mineral field. And the mining-induced stress measuring result shows that, according to the magnitude of front abutment pressure the stress region can be separated into stress-relaxed area, stress-concentrated area and initial stress area. At the -50 m mining level of this mine, the range of stress-relaxed area is 0-3 m before mining face; the range of stress-concentrated area is 3-55 m before mining face, and the maximum mining-induced stress is 16.5-17.5 MPa, which is 15-20 m from the mining face. The coefficient of stress concentration is 1.85.
Resumo:
The effect of alcohol solution on single human red blood Cells (RBCs) was investigated using near-infrared laser tweezers Raman spectroscopy (LTRS). In our system, a low-power diode laser at 785 nm was applied for the trapping of a living cell and the excitation of its Raman spectrum. Such a design could simultaneously reduce the photo-damage to the cell and suppress the interference from the fluorescence on the Raman signal. The denaturation process of single RBCs in 20% alcohol solution was investigated by detecting the time evolution of the Raman spectra at the single-cell level. The vitality of RBCs was characterized by the Raman band at 752 cm(-1), which corresponds to the porphyrin breathing mode. We found that the intensity of this band decreased by 34.1% over a period of 25 min after the administration of alcohol. In a further study of the dependence of denaturation on alcohol concentration, we discovered that the decrease in the intensity of the 752 cm(-1) band became more rapid and more prominent as the alcohol concentration increased. The present LTRS technique may have several potential applications in cell biology and medicine, including probing dynamic cellular processes at the single cell level and diagnosing cell disorders in real time. Copyright (c) 2005 John Wiley T Sons, Ltd.
Resumo:
Protein electrophoresis was used to examine the blood protein polymorphism in Yunnan local pig breeds, i.e., the Saba pig, Dahe pig, and Diannan small-ear pig breeds, Of 38 genetic loci surveyed 9 were found to be polymorphic. The percentage of polymorphic loci (P) varies from 0.1875 to 0.2121, and the mean individual heterozygosity (H) varies front 0.0712 to 0.1027 in three pig breeds. The results indicate that blood protein polymorphism in Yunnan pig breeds is high. Yunnan local pig breeds have a wealth of genetic diversity at the level of blood proteins.
Resumo:
In 6 Chinese yak (Bos. grunniens) populations including 177 yaks, 34 blood protein loci were studied by horizontal starch gel electrophoresis, four of these loci (AKP: ALB, LDH-1, TF) were found to be polymorphic. The percentage of polymorphic loci(P) is 0.118, the mean individual heterozygosity(H) is 0.015, which means a low level of genetic diversity in the whole Chinese yak population. The coefficient of gene differentiation (G(ST)) is 0.0625, which indicated an almost-indistinguishable divergence among different populations at the level of blood protein electrophoresis.
Resumo:
Iron deficiency can induce cyanobacteria to synthesize siderophore receptor proteins on the outer membrane to enhance the uptake of iron. In this study, an outer membrane of high purity was prepared from Anabaena sp. PCC 7120 based on aqueous polymer two-phase partitioning and discontinuous sucrose density ultra-centrifugation, and the induction of outer membrane proteins by iron deficiency was investigated using 2-D gel electrophoresis. At least. five outer membrane proteins were newly synthesized or significantly up-regulated in cells transferred to iron-deficient conditions, which were all identified to be siderophore receptor proteins according to MALDI-TOF-MS analyses. Bacterial luciferase reporter genes luxAB were employed to monitor the transcription of the encoding genes. The genes were induced by iron deficiency at the transcriptional level in different responsive modes. Luciferase activity expressed from an iron-regulated promoter may be used as a bioreporter for utilizable iron in natural water samples. (C) 2009 National Natural Science Foundation of China and Chinese Academy of Sciences. Published by Elsevier Limited and Science in China Press. All rights reserved.
Resumo:
A novel fish chemokine receptor gene, chemokine (C-X-C motif) receptor 3 (CXCR3)-like was isolated from the grass carp Ctenopharyngodon idella , with its full-length genomic sequence. The cDNA of grass carp CXCR3-like (gcCXCR3-like) consists of 1261 bp with a 49bp 5'-UTR and a 189 bp 3'-UTR. An open reading frame of 1023 bp encodes a 341-amino acid peptide, with seven transmembrane helices. The deduced amino acid sequence showed the same sequence identities (37.8%) with its counterparts in goat and human. The gcCXCR3-like gene consists of two exons, with one intervening intron, spaced over approximately 2 kb of genomic sequence. Phylogenetic analyses clearly demonstrated that the gcCXCR3-like resembles the CXCR3s of other vertebrates. Real-time PCR analysis showed that gcCXCR3-like was expressed in all tested organs except heart and the expression level of gcCXCR3-like was highest in brain. Flow cytometric analyses showed the positive rate of labelled leukocytes from the healthy grass carp was 17.3%, and the labelled leukocytes were divided into three types by cell sorting. Immunohistochemical localization revealed that gcCXCR3-like expressed in whole brain regions including cerebel, diencephalon, medulla oblongata, optic lobe, and rhinencephalon, and that the labelled leukocytes are actually populations of monocyte and/or phagocyte, lymphocyte and the granulocyte. It is considered that fish CXCR expression and their function may need to be investigated in both nervous and immune systems. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Background: Some triploid and tetraploid clones have been identified in the gynogenetic gibel carp, Carassius auratus gibelio Bloch, by karyotypic and cytologic analyses over many years. Further, 5-20% males and karyotypic diversity have been found among their natural and artificial populations. However, the DNA contents and the relation to their ploidy level and chromosome numbers have not been ascertained, and whether normal meiosis occurs in spermatogenesis needs to be determined in the different clones. Methods: The sampled blood cells or sperms were mixed with blood cells from chicken or individual gibel carp and fixed in 70% pre-cooled ethanol overnight at 4degreesC. The mixed cell pellets were washed 2-3 times in 1x phosphate buffered saline and then resuspended in the solution containing 0.5% pepsin and 0.1 M HCl. DNA was stained with propidium iodide solution (40 mug/mL) containing 4 kU/ml RNase. The measurements of DNA contents were performed with Phoenix Flow Systems. Results: Triploid clones A, E, F, and P had almost equal DNA content, but triploid clone D had greater DNA content than did the other four triploid clones. DNA content of clone M (7.01 +/- 0.15 pg/nucleus) was almost equal to the DNA content of clone D (5-38 +/- 0.06 pg/nucleus) plus the DNA content of common carp sperm (1.64 +/- 0.02 pg/nucleus). The DNA contents of sperms from clones A, P, and D were half of their blood cells, suggesting that normal meiosis occurs in spermatogenesis. Conclusions: Flow cytometry is a powerful method to analyze genetic heterogeneity and ploidy level among different gynogenetic clones of polyploid gibel carp. Through this study, four questions have been answered. (a) The DNA content correlation among the five triploid clones and one multiple tetraploid clone was revealed in the gibel carp, and the contents increased with not only the ploidy level but also the chromosome number. (b) Mean DNA content was 0.052 pg in six extra chromosomes of clone D, which was higher than that of each chromosome in clones A, E, F, and P (about 0.032 pg/ chromosome). This means that the six extra chromosomes are larger chromosomes. (c) Normal meiosis occurred during spermatogenesis of the gibel carp, because DNA contents of the sperms from clones A, P, and D were almost half of that in their blood cells. (d) Multiple tetraploid clone M (7.01 +/- 0.15 pg/nucleus) contained the complete genome of clone D (5.38 +/- 0.06 pg/nucleus) and the genome of common carp sperm (1.64 +/- 0.02 pg/nucleus). Cytometry Part A 56A:46-52, 2003. (C) 2003 Wiley-Liss, Inc.
Resumo:
By examining iron contents, it is demonstrated that the monogenean Ancyrocephalus mogurndae (Yamaguti, 1940) feeds on the blood of its host, the mandarin fish Siniperca chuatsi (Basilewsky). The iron content and then the quantity of blood necessary to produce this amount of iron are found different in young and fully-matured worms. Young worms contain higher levels of iron and estimated amount of blood. It is suggested that A. mogurndae may start to feed on host blood as attached on gills, and the amount of blood ingested by young worms may vary from 0.01 to 1.00 mu l before reproduction. The difference between young and fully-matured worms may be accounted for by the elimination of haematin and change of food composition in matured worms and may also be affected by reproduction. Experimental infections of the monogenean may provide supportive information for explaining the difference, and further studies should also examine the effect of immune components in host blood ol mucus on the intestines of the parasite.
Resumo:
Deep level transient spectroscopy (DLTS) and thermally stimulated current spectroscopy (TSC) have been used to investigate defects in semi-conducting and semi-insulating (SI) InP after high temperature annealing, respectively. The results indicate that the annealing in iron phosphide ambient has an obvious suppression effect of deep defects, when compared with the annealing in phosphorus ambient. A defect annihilation phenomenon has also been observed in Fe-doped SI-InP materials after annealing. Mechanism of defect formation and annihilation related to in-diffusion of iron and phosphorus is discussed. Nature of the thermally induced defects has been discussed based on the results. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Deep level defects in high temperature annealed semi-conducting InP have been studied by deep level transient spectroscopy (DLTS). There is obvious difference in the deep defects between as-grown InP, InP annealed in phosphorus ambient and iron phosphide ambient, as far as their quantity and concentration are concerned. Only two defects at 0.24 and 0.64 eV can be detected in InP annealed in iron phosphide ambient, while defects at 0.24, 0.42, 0.54 and 0.64 eV have been detected in InP annealed in phosphorus ambient, in contrast to two defects at 0.49 and 0.64 eV or one defect at 0.13 eV in as-grown InP. A defect suppression phenomenon related to iron diffusion process has been observed. The formation mechanism and the nature of the defects have been discussed.
Resumo:
Deep level defects in as-grown and annealed n-type and semi-insulating InP have been studied. After annealing in phosphorus ambient, a large quantity of deep level defects were generated in both n-type and semi-insulating InP materials. In contrast, few deep level defects exist in InP after annealing in iron phosphide ambient. The generation of deep level defects has direct relation with in-diffusion of iron and phosphorus in the annealing process. The in-diffused phosphorus and iron atoms occupy indium sites in the lattice, resulting in the formation of P anti-site defects and iron deep acceptors, respectively. T e results indicate that iron atoms fully occupy indium sites and suppress the formation of indium vacancy and P anti-site, etc., whereas indium vacancies and P anti-site defects. are formed after annealing in phosphor-us ambient. The nature of the deep level defects in InP has been studied based on the results.
Resumo:
Deep level defects in annealed InP have been studied by using photoluminescence spectroscopy (PL), thermally stimulated current (TSC), deep level transient spectroscopy (DLTS), and positron annihilation lifetime (PAL). A noticeable broad PL peak centered at 1.3 eV has been observed in the InP sample annealed in iron phosphide ambient. Both the 1.3 eV PL emission and a defect at E-C-0.18 eV correlate with a divacancy detected in the annealed InP sample. The results make a divacancy defect and related property identified in the annealed InP. (c) 2006 American Institute of Physics.