43 resultados para intelligent sensors

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Qinghai-Tibet Railway is the longest and highest plateau railway in the world. A long term monitoring system of the stability of the subgrade in the permafrost regions should be put forward immediately to prevent damage to the railway. As it's very difficult to set up the long-distance automatic monitoring system which contains a lot of measure points along the 550 kilometers railway in the permafrost area, we present a subgrade temperature monitor system based on fiber Bragg grating (FBG). In this paper the principles of the FBG was presented, and the feasibility of the FBG sensors in the permafrost area of Qinghai-Tibet plateau was analysized. We embedded fifteen FBG temperature sensors and thermal resistance temperature sensors. A contrast experiment is made while the two kinds of sensors are arranged in the same position. The result of the experiment shows that the accuracy of the FBG temperature sensors is less than 0.1 degrees C. and the FBG sensors can do well in the measurement of pattern which the temperature varies with the depth of the permafrost soil. The result also shows the stability of the FBG sensors in the bad environmental condition of Qinghai-Tibet plateau, which proves the feasibility of the application of FBG sensors and our monitoring system on the Qinghai-Tibet railway.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To improve the sensitivity of our laser radar system, we provided a set of control method for APDs (Avalanched Photodiodes) based on single-chip computer together with the circuits dealing with noise and temperature. It adjusts the voltages intelligently and maintains the APD's optimal working status.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The thermal properties of a micro-electromechanical system sensor were analysed by a novel digital moire method. A double-layer micro-cantilever sensor (60 mu m long, 10 mu m width and 2 mu dm thick) was prepared by focused ion beam milling. A grating with frequency of 5000 lines mm- I was etched on the cantilever. The sensor was placed into a scanning electron microscope system with a high temperature device. The observation and recording of the thermal deformation of the grating were realised in real-time as the temperature rose from room temperature to 300 degrees C at intervals of 50 degrees C. Digital moire was generated by interference of the deformed grating and a digital virtual grating. The thermal properties including strain distribution of the sensor and the linear expansion coefficient of polysilicon were accurately measured by the phase-shifted moire patterns.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An optimal algorithm of manufacturing path planner for intelligent laser surface modification is presented. Elements included in the optimal objective have been analyzed. A 6-D manufacture trace that satisfies the requirements of special craft and 5-axis laser processing robot system has been generated from the path planner by method of parallel section in which combinations of modification spots size with curvature of processing surfaces and modification craft parameters are considered. Related experiments have been successfully carried out with the computer integrated multifunctional laser manufacturing system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Based on the computer integrated and flexible laser processing system, develop the intelligent measuring sub-system. A novel model has been built to compensate the deviations of the main frame, a new-developed 3-D laser tracker system is applied to adjust the accuracy of the system. Analyzing the characteristic of all kinds of automobile dies, which is the main processing object of the laser processing system, classify the types of the surface and border needed to be measured and be processed. According to different types of surface and border, develop 2-D adaptive measuring method based on B?zier curve and 3-D adaptive measuring method based on spline curve. During the data processing, a new 3-D probe compensation method has been described in details. Some measuring experiments and laser processing experiments are carried out to testify the methods. All the methods have been applied in the computer integrated and flexible laser processing system invented by the Institute of Mechanics, CAS.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new type of sensor with the flexible substrate is introduced. It is applicable in measuring instantaneous heat flux on the model surface in a hypersonic shock tunnel. The working principle, structure and manufacture process of the sensor are presented. The substrate thickness and the dynamic response parameter of the sensor are calculated. Because this sensor was successfully used in measuring the instantaneous heat flux on the surface of a flat plate in a detonation-driven shock tunnel, it may be effective in measuring instantaneous heat flux on the model surface.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two fiber grating sensors for high-temperature measurements are proposed and experimentally demonstrated. The interrogation technologies of the sensor systems are all simple, low cost but effective. In the first sensor system, the sensor head is comprised of one fiber Bragg grating (FBG) and two metal rods. The lengths of the rods are different from each other. The coefficients of thermal expansion of the rods are also different from each other. The FBG will be strained by the sensor head when the temperature to be measured changes. The temperature is measured based on the wavelength-shifts of the FBG induced by the strain. In the second sensor system, a long-period fiber grating (LPG) is used as the high-temperature sensor head. The LPG is very-high-temperature stable CO2-Aaser-induced grating and has a linear function of wavelength-temperature in the range of 0 - 800 degrees C. A dynamic range of 0 - 800 degrees C and a resolution of 1 degrees C have been obtained by either the first or the second sensor system. The experimental results agree with theoretical analyses. (c) 2007 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pt-, Pd-, and Zr-doped SnO2 thin films and dopant-free VOx films were fabricated by planar magnetron sputtering. Tests for sensitivity to SO2 for all samples were conducted at 180 degreesC, and the sensitivities were investigated ex situ with photometric and ellipsometric methods at room temperature. It was found that the optical sensitivities as well as the sensitive wavelength region for SnO2 films could be tuned by doping. The Pd-doped SnO2 films had good sensitivity in the visible range, and the Zr-doped in the near IR. The dominant sensitive wavelength region for VOx films fell into the visible range, and the ratio of the sensitivity in the visible to that in the near IR increased with O-2/Ar in the depositing atmosphere. (C) 2001 society of Photo-Optical instrumentation Engineers .

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pt/AlGaN/AIN/GaN high electron mobility transistors (HEMT) were fabricated and characterized for hydrogen sensing. Pt and Ti/Al/Ni/Au metals were evaporated to form the Schottky contact and the ohmic contact, respectively. The sensors can be operated in either the field effect transistor (FET) mode or the Schottky diode mode. Current changes and time dependence of the sensors under the FET and diode modes were compared. When the sensor was operated in the FET mode, the sensor can have larger current change of 8 mA, but its sensitivity is only about 0.2. In the diode mode, the current change was very small under the reverse bias but it increased greatly and gradually saturated at 0.8 mA under the forward bias. The sensor had much higher sensitivity when operated in the diode mode than in the FET mode. The oxygen in the air could accelerate the desorption of the hydrogen and the recovery of the sensor. (c) 2007 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pt/AlGaN/AIN/GaN Schottky diodes are fabricated and characterized for hydrogen sensing. The Pt Schottky contact and the Ti/Al/Ni/Au ohmic contact are formed by evaporation. Both the forward and reverse currents of the device increase greatly when exposed to hydrogen gas. A shift of 0.3 V at 300K is obtained at a fixed forward current after switching from N-2 to 10%H-2+N-2. The sensor responses under different concentrations from 50ppm H-2 to 10%H-2+N-2 at 373K are investigated. Time dependences of the device forward current at 0.5 V forward bias in N-2 and air atmosphere at 300 and 373K are compared. Oxygen in air accelerates the desorption of the hydrogen and the recovery of the sensor. Finally, the decrease of the Schottky barrier height and sensitivity of the sensor are calculated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Current-based microscopic defect analysis method such as current deep level transient spectroscopy (I-DLTS) and thermally stimulated current have been developed over the years at Brookhaven National Laboratory (BNL) for the defect characterizations on heavily irradiated (Phi(n) >= 10(13) n/cm(2)) high-resistivity (>= 2 k Omega cm) Si sensors/detectors. The conventional DLTS method using a capacitance transient is not valid on heavily irradiated high-resistivity Si sensors/detectors. A new optical filling method, using lasers with various wavelengths, has been applied, which is more efficient and suitable than the traditional voltage-pulse filling. Optimum defect-filling schemes and conditions have been suggested for heavily irradiated high-resistivity Si sensors/detectors. (c) 2006 Published by Elsevier Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, platinum (Pt) with a thickness of 45 nm was sputtered on the surface of AlGaN/GaN heterostructure to form the Schottky contact and the back-to-back Schottky diodes were characterized for H-2 sensing at room temperature. Both the forward and reverse current of the devices increased with exposure to H-2 gas, which was attributed to Schottky barrier height reduction caused by hydrogen absorption in the catalytic metals. A shift of 0.7 V at 297 K was obtained at a fixed forward current of 0.1 mA after switching from N-2 to 40% H-2 in N-2. The sensor's responses under different concentrations from 2500 ppm H-2 to 40% H-2 in N-2 at 297 K were investigated. Time response of the sensor at a fixed bias of 1 V was given. Finally, the decrease of the Schottky barrier height and the sensitivity of the sensor were calculated. (C) 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pt/AlGaN/AlN/GaN Schottky diodes have been fabricated and characterized for H-2 sensing. Platinum (Pt) with a thickness of 20nm was evaporated on the sample to form the Schottky contact. The ohmic contact, formed by evaporated Ti/Al/Ni/Au metals, was subsequently annealed by a rapid thermal treatment at 860 degrees C for 30 s in N-2 ambience. Both the forward and reverse current of the device increased greatly when exposed to H-2 gas. The sensor's responses under different hydrogen concentrations from 500ppm to 10% H-2 in N-2 at 300K were investigated. A shift of 0.45V at 297K is obtained at a fixed forward current for switching from N-2 to 10% H-2 in N-2. Time response of the sensor at a fixed bias of 0.5 V was also measured. The turn-on response of the device was rapid, while the recovery of the sensor at N-2 atmosphere was rather slow. But it recovered quickly when the device was exposed to the air. The decrease in the barrier height of the diode was calculated to be about 160meV upon introduction of 10% H-2 into the ambient. The sensitivity of the sensor is also calculated. Some thermodynamics analyses have been done according to the Langmuir isotherm equation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel low-power digital baseband circuit for UHF RFID tag with sensors is presented in this paper. It proposes a novel baseband architecture and a new operating scheme to fulfill the sensor functions and to reduce power consumption. It is also compatible with the EPC C1G2 UHF RFID protocol. It adopts some advanced low power techniques for system design and circuit design: adaptive clock-gating, multi-clock domain and asynchronous circuit. The baseband circuit is implemented in 0.18um 1P3M standard CMOS process. ne chip area is 0.28 mm(2) excluding test pads. Its power consumption is 25uW under 1.1V power supply.