71 resultados para in-channel dam
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
In order to explore the temporal impacts of a small dam on riverine zooplankton, monthly samples were conducted from November 2005 to June 2006 in a reach of Xiangxi River, China, which is affected by a small hydropower plant. A total of 56 taxa of zooplankton were recorded during the study and rotifers were the most abundant group, accounting for 97% of total taxa, while the others were copepod nauplii and copepod adults. This study indicated that: (1) the small dam in the Xiangxi River study area created distinct physical and ecological conditions relative to free-flowing lotic reaches despite the constrained channel and small size of the dam; (2) the existence of the plant's small dam had a significant effect on the zooplankton community. In long periods of drought or dry seasons the effect of the dam on potamoplankton was more pronounced (e.g., November, February, March, and May). But the downfall or the connectivity of channel appeared to decrease the effect of small hydropower plants on riverine zooplankton (e.g., April). The present observation underscores the need for additional studies that provide more basic data on riverine zooplankton communities and quantify ecological responses to dam construction over longer time spans.
Resumo:
Interleukin-1 beta (IL-1 beta) is one of the pivotal early response pro-inflammatory cytokines that enables organisms to respond to infection and induces a cascade of reactions leading to inflammation. In spite of its importance and two decades of studies in the mammalian species, genes encoding IL-1 beta were not identified from non-mammalian species until recently. Recent research, particularly with genomic approaches, has led to sequencing of IL-1 beta from many species. Clinical studies also Suggested IL-1 beta as an immunoreagulatory molecule potentially useful for enhancing vaccination. However, no IL-1 beta genes have been identified from channel catfish, the primary aquaculture species from the United States. In this study, we identified two distinct cDNAs encoding catfish IL-1 beta. Their encoding genes were identified, sequenced, and characterized. The catfish IL-1 beta genes were assigned to bacterial artificial chromosome (BAC) clones. Genomic studies indicated that the IL-1 beta genes were tandemly duplicated on the same chromosome. Phylogenetic analysis of various IL-1 beta genes indicated the possibility of recent species-specific gene duplications in channel catfish, and perhaps also in swine and carp. Expression analysis indicated that both IL-1 beta genes were expressed, but exhibited distinct expression profiles in various catfish tissues, and after bacterial infection with Edwardsiella ictaluri. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
Eight kinds of plants were tested in channel-dyke and field irrigation systems. The removal rates of TP, phosphate, TN, ammonia, CODcr and BOD, in the channel-dyke system with napiergrass (Pennisetum purpurem Schumach, x Pennisetum alopecuroides (L.) Spreng American) were 83.2, 82.3, 76.3, 96.2, 73.5 and 85.8%, respectively. The field irrigation systems with rice I-yuanyou No.1(88-132) (Oryza sativa L.) and rice II- suakoko8 (Oryza glaberrima) had high efficiency for N removal; the removal rate were 84.7 and 84.3%, respectively. The mass balance data revealed that napiergrass, rice I and II were the most important nutrient sinks, assimilating more than 50% of TP and TN. Plant uptake of N and P as percentage of total removal from wastewater correlated with biomass yield of and planting mode. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
Antimicrobial peptides (AMPs) are important components of the host innate immune response against microbial invasion. In addition to the previously known four classes of antimicrobial peptides, a fifth class of antimicrobial peptides has been recently identified to include NK-lysins that have a globular three-dimensional structure and are larger with 74-78 amino acid residues. NK-lysin has been shown to harbor antimicrobial activities against a wide spectrum of microorganisms including bacteria, fungi, protozoa, and parasites. To date, NK-lysin genes have been reported from only a limited number of organisms. We previously identified a NK-lysin cDNA in channel catfish. Here we report the identification of two noveltypes of NK-lysin transcripts in channel catfish. Altogether, three distinct NK-lysin transcripts exist in channel catfish. In this work, their encoding genes were identified, sequenced, and characterized. We provide strong evidence that the catfish NK-lysin gene is tripled in the same genomic neighborhood. All three catfish NK-lysin genes are present in the same genomic region and are tightly linked on the same chromosome, as the same BAC clones harbor all three copies of the NK-lysin genes. All three NK-lysin genes are expressed, but exhibit distinct expression profiles in various tissues. In spite of the existence of a single copy of NK-lysin gene in the human genome, and only a single hit from the pufferfish,genome, there are two tripled clusters of NK-lysin genes on chromosome 17 of zebrafish in addition to one more copy on its chromosome 5. The similarity in the genomic arrangement of the tripled NK-lysin genes in channel catfish and zebrafish suggest similar evolution of NK-lysin genes. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
为分析淤地坝土壤性质的剖面变化规律及其在非点源污染工程治理方面的可能性,采用经典统计学方法研究了黄土高原典型淤地坝土壤性质在5.20 m剖面上的变化规律,并探讨了淤地坝作为碳储存库以及养分富集库的独特功能.结果表明,①坝前土壤剖面容重、砂粒含量低于坝尾,而土壤含水率、有机碳、粘粒、粉粒、速效磷、硝态氮以及铵态氮均大于坝尾;容重随剖面的变异情况为弱变异性,其余指标为中等变异性;除坝前砂粒含量和坝尾土壤含水率外,其余指标均呈正态分布;②坝前和坝尾剖面土壤含水率随土层深度的增加均呈锯齿型变化趋势,在剖面上的分布表现为波动型;土壤有机碳、速效磷、铵态氮随剖面的变化规律与土壤水分的趋势相同;③除坝尾容重与硝态氮、铵态氮及速效磷与铵态氮的相关性未达到显著水平外,土壤含水率、有机碳、容重、粘粒、粉粒、砂粒、速效磷、硝态氮以及铵态氮之间的相关性均达到了显著水平(p<0.05),并且坝前与坝尾剖面土壤各个性质之间所表现的正相关性或负相关性是一致的;④淤地坝作为黄土高原的一个重要碳储存库,坝前有机碳储量高于坝尾,且坝前在400~520 cm储量最高,坝尾在0~100 cm储量最高;⑤淤地坝对速效养分具有富集效应,坝前储量大于坝尾...
Resumo:
Dam is the key main works in the construction of water power. The success or failure of the construction of the dam mainly depends on the stability of the dam foundation. The double curvature arch dam-XiaoWan Dam is the highest one among the dams with the same type in the world, and the water thrust acted on it reaches ton, so the rock bearing capacity of dam foundation becomes more important. Because of the high and steep valley-side slope, the large scale of excavation and the complex body type of excavation, it is prominent that the problem of stress release of the rock mass in dam foundation. More great attentions should be paid for the stability and the degraded of rock properties of rock mass induced by the stress release. In this paper, the phenomena of stress release of rock mass in XiaoWan Dam foundation and its mechanisms were analyzed based on the collection of data, the detailed field engineering investigations, measurement of the rock mass and the 2D numerical calculations. The rock mass under the foundation is weak-weathered to intact, the quality of which is good. After excavation of the foundation, the rock mass near the slope surface occurred extend, stretch and stick-slip along original textures till the new fracture surface formed. Then platy structure of the rock mass takes on. The rock mass in the dam foundation occur resilience due to stress release towards free faces with the characteristics of time effect and localized deformation. In-situ measurements show that the rock mass near the surface are degraded. The stress release induced by excavation is a process of the interaction between engineering structures and geologic body. The stress release of rock mass in dam foundation is related to the changed degree of geometrical conditions. The rock near excavation surface failed nearly under uniaxial stresses. The bending-breaking mechanism of plate girder can interpret the failure model of the rock mass with platy structure in dam foundation slope. In essence, the stress release is the change of stress field including the change of directions and magnitudes of stress induced by excavation, which can induce the comedown of the safety margin. In this paper, the inducing conditions of stress release were calculated by numerical analyses. Moreover, from the point of view that the change of stress field, the coefficient of K, i.e. the variable load coefficient was proposed. Then the law of the change of it is interpreted. The distributional characteristics of fracture zone were expressed by the coefficient. The stress release of hard rock has the characteristic of localization. The measuring technique of sound wave can not reflect the small cracks in this kind of rock mass due to stress release. So, the spectral analysis method was proposed. At the same time, the application foreground in engineering of the Stockwell Time-Frequency- Spectrum method was discussed with a view to the limitation of it.
Resumo:
The Xiao-wan Power Station is the second highest arch dam in the world under construction. The height of the dam is about 292m. Large-scale excavation in the dam foundation of Xiao-wan Power Station has brought intensive unloading phenomenon. We collected a large number of firsthand data on unloaded rock mass in dam foundation, which supplies a natural testing ground for researching unloaded rock mass after excavation. Detailed study was carried out on the parameters of unloaded rock mass in the dam foundation of Xiao-wan Power Station. The study is not only importance for the Xiao-wan Power Station, but also has important instruction significance to similar projects in the Southwest of China. In order to study the mechanical parameters of unloaded rock mass, large field and laboratory tests were carried out. The test results showed the size effect of the sample is obvious. The change of deformation modulus of rock is not obvious. However, the Poisson's ratio of rock is increased under unloaded condition, its value is even more than 0.5. The theoretical forecasted results is accordance to the field tests including sound wave data and deformation monitoring data, which shows the forecasted results were reasonable. The soften yield criterion was adopted in the thesis to study the characteristics of the brittle rock mass in order to simulate their brittle failures. Based on the study results above, the transform of the structural plane network model to the numerical one was carried out, which made it feasible to consider the influence of large amount joints on the mechanical characteristic of rock mass in the numerical analyses. Using a factor, the degree of the damage or strengthen of rock mass can be determined rapidly, which proposed a rapid and feasible method for the determination of the parameters of rock mass.
Resumo:
The great deal of joints and faults , existing in the rock mass , are the leading cause of discontinuous rock mass. Structural planes not only destroy the integrality of rock mass, but also lead nonlinearity、heterogeneity、anisotropy and failure mode on mechanical properties of rock mass. Therefore the selection of strength and deformation parameters was very difficult. In practical rock mass engineering, equivalent parameters of rock mass were selected by the method of expert experience and engineering analogy. Based on the fine description of discontinuous joints in the type Ⅳ and Ⅴ rock mass and geological survey datum in situ, models was obtained by generalizing the structure of rock mass by the method of statistical analysis. Model intensity and deformation test were carried out on the true triaxial apparatus. Intermediate principle stress effect, anisotropy and dimension effect of discontinuous rock mass were considered in the model test. 3-D correction to Hoek-Brown empirical criterion was done by analysed the test datum. Detailed works were listed as follows: (1) The factors influenced intensity and deformation of discontinuous joints rock mass were the value of 、continuity, density and included angle of joints and anisotropy of joint plane. True triaxial intensity and deformation tests were carried out by considering above factors. The influence rule was obtained and corresponding relation formulary was established; (2) Based on the true triaxial tests under different stress path and load modes, we obtain intensity and deformation rule of rock mass; (3) Based on a great deal of true triaxial tests and other test datum, correction to the Hoek-Brown empirical criterion was done in the chapter 4. The intermediate principle stress was considered in the corrected formulary. It indicated that the formulary was applicable under a certain condition. In addition, the yield plane form of corrected Hoek-Brown empirical criterion under principle stress space was described in the paper. And the question of corner of yield plane was discussed; (4) Based on the single discontinuity theory, the three-dimensional intensity formulary of discontinuous joint rock mass was established. Correction to the intensity formulary was done considering intermediate principle stress effect. We may obtain the conclusion that the intensity of the discontinuous joint rock mass was influenced on compositive factors. They were 、 、continuity、internal frictional angle and cohesiveness of joint plane and rock; (5) The results of the true triaxial model test was applied into parameters evaluation of dam foundation rock mass of JinPing hydropower station. For there were abundant ophicalcite in the dam foundation, the interval of intensity and formation parameters influenced on continuity were determined based on test datum. (6) Especial mould for prismatic jointing model was designed. True triaxial intensity and deformation tests by Basalt with prismatic jointing were carried out. The influence of intermediate principle stress, stress path, anisotropy effect and dimensional effect to intensity and deformation was discussed in the chapter 6. The work of (3)、(4)、(6) was significative supplement and innovation to current test and theory.
Resumo:
The Gangxi oil field has reached a stage of high water production. The reservoir parameters, such as reservoir physical characteristics, pore structure, fluid, have obviously changed. This thesis therefore carries out a study of these parameters that control reservoir characteristics, physical and chemical actions that have taken place within the reservoirs due to fluid injection, subsequent variations of reservoir macroscopic physical features, microscopic pore structures, seepages, and formation fluid properties. This study rebuilds a geologic model for this oil field, establishes a log-interpreting model, proposes a methodology for dealing with large pore channels and remnant oil distribution, and offers a basis for effective excavation of potential oil, recovery planning, and improvement of water-injection techniques. To resolve some concurrent key problems in the process of exploration of the Gangxi area, this thesis carries out a multidisciplinary research into reservoir geology, physical geography, reservoir engineering, and oil-water well testing. Taking sandstone and flow unit as objects, this study establishes a fine geologic model by a quantificational or semi-quantificational approach in order to understand the remnant oil distribution and the reservoir potential, and accordingly proposes a plan for further exploration. By rebuilding a geological model and applying reservoir-engineering methods, such as numerical simulation, this thesis studies the oil-water movement patterns and remnant-oil distribution, and further advances a deployment plan for the necessary adjustments and increase of recoverable reserves. Main achievements of this study are as follows: 1. The Minghazhen Formation in the Gangxi area is featured by medium-sinuosity river deposits, manifesting themselves as a transitional type between typical meandering and braided rivers. The main microfacies are products of main and branch channels, levee, inter-channel overflows and crevasse-splay floodplains. The Guantao Group is dominantly braided river deposit, and microfacies are mainly formed in channel bar, braided channel and overbank. Main lithofacies include conglomerate, sandstone, siltstone and shale, with sandstone facies being the principal type of the reservoir. 2. The reservoir flow unit of the Gangxi area can be divided into three types: Type I is a high-quality heterogeneous seepage unit, mainly distributed in main channel; Type II is a moderate-quality semi-heterogeneous seepage unit, mainly distributed in both main and branch channels, and partly seen within inter-channel overflow microfacies; Type III is a low-quality, relatively strong heterogeneous seepage unit, mainly distributed in inter-channel overflow microfacies and channel flanks. 3. Flow units and sedimentary microfacies have exerted relatively strong controls on the flowing of underground oil-water: (1) injection-production is often effective in the float units of Type I and II, whilst in the same group of injection-production wells, impellent velocity depends on flow unit types and injection-production spacing; (2) The injection-production of Type III flow unit between the injection-production wells of Type I and II flow units, however, are little effective; (3) there can form a seepage shield in composite channels between channels, leading to inefficient injection and production. 4. Mainly types of large-scale remnant-oil distribution are as follows: (1) remnant oil reservoir of Type III flow unit; (2) injection-production well group of remnant oil area of Type III flow unit; (3) remnant oil reservoirs that cannot be controlled by well network, including reservoir featured by injection without production, reservoir characterized by production without injection, and oil reservoir at which no well can arrive; (4) remnant oil area where injection-production system is not complete. 5. Utilizing different methods to deal with different sedimentary types, sub-dividing the columns of up to 900 wells into 76 chronostratigraphic units. Four transitional sandstone types are recognized, and contrast modes of different sandstone facies are summarized Analyzing in details the reservoirs of different quality by deciphering densely spaced well patterns, dividing microscopic facies and flow units, analyzing remnant oil distribution and its effect on injection-production pattern, and the heterogeneity. Theory foundation is therefore provided for further excavation of remnant oil. Re-evaluating well-log data. The understanding of water-flood layers and conductive formations in the Gangxi area have been considerably improved, and the original interpretations of 233 wells have changed by means of double checking. Variations of the reservoirs and the fluid and formation pressures after water injection are analyzed and summarized Studies are carried out of close elements of the reservoirs, fine reservoir types, oil-water distribution patterns, as well as factors controlling oil-gas enrichment. A static geological model and a prediction model of important tracts are established. Remaining recoverable reserves are calculated of all the oil wells and oil-sandstones. It is proposed that injection-production patterns of 348 oil-sandstones should be adjusted according to the analysis of adaptability of all kinds of sandstones in the injection-production wells.
Resumo:
Ecological responses to dam construction are poorly understood, especially for downstream benthic algal communities. We examined the responses of benthic algal communities in downstream reaches of a tributary of the Xiangxi River, China, to the construction of a small run-of-river dam. From February 2003 to August 2006, benthic algae, chemical factors, and habitat characteristics were monitored upstream and downstream of the dam site. This period spanned 6 mo before dam construction and 37 mo after dam construction. Benthic algal sampling yielded 199 taxa in 59 genera that belonged to Bacillariophyta, Chlorophyta, and Cyanophyta. Some physical factors (flow velocity, water depth, and channel width) and 3 algal metrics (diatom species richness, Margalef diversity, and % erect individuals) were significantly affected by the dam construction, whereas chemical factors (e.g., NH4-N, total N, SiO2) were not. Nonmetric multidimensional scaling (NMS) ordinations showed that overall algal assemblage structure downstream of the dam sites was similar to that of upstream control sites before dam construction and for 1 year after dam construction (p > 0.05). However, sites belonging to upstream and downstream reaches were well separated on NMS axis 1 during the 2(nd) and 3(rd) years after dam construction. Our results suggest that impacts of dam construction on benthic algal communities took 2 to 3 y to emerge. Further development of a complete set of indicators is needed to address the impact of small-dam construction. Our observations underscore the need for additional studies that quantify ecological responses to dam construction over longer time spans.
Resumo:
A new set of experimental pressure drop data, collected aboard the Russian IL-76MDK, is reported for bubbly airwater two-phase flow in a square channel with a cross-sectional area of 12x 12mm(2). The present data are compared to several frequently used empirical models, e.g. homogeneous model, Lockhart-Martinelli-Chisholm correlation and Friedel's model. It is shown that the predictions of the models mentioned above are generally not satisfied. A new homogeneous model is developed based on the analysis of the characteristics of bubbly two-phase flow at reduced gravity. It is tested with the present data and other data collected by other researchers in circular pipes. Some questions related to the present model are also discussed. (C) 2002 COSPAR. Published by Elsevier Science Ltd. All rights reserved.
Resumo:
Reliable turbulent channel flow databases at several Reynolds numbers have been established by large eddy simulation (LES), with two of them validated by comparing with typical direct numerical simulation (DNS) results. Furthermore, the statistics, such as velocity profile, turbulent intensities and shear stress, were obtained as well as the temporal and spatial structure of turbulent bursts. Based on the LES databases available, the conditional sampling methods are used to detect the structures of burst events. A method to deterimine the grouping parameter from the probability distribution function (pdf) curve of the time separation between ejection events is proposed to avoid the errors in detected results. And thus, the dependence of average burst period on thresholds is considerably weakened. Meanwhile, the average burst-to-bed area ratios are detected. It is found that the Reynolds number exhibits little effect on the burst period and burst-to-bed area ratio.
Resumo:
The two-dimensional cellular detonation propagating in a channel with area-changing cross section was numerically simulated with the dispersion-controlled dissipative scheme and a detailed chemical reaction model. Effects of the flow expansion and compression on the cellular detonation cell were investigated to illustrate the mechanism of the transverse wave development and the cellular detonation cell evolution. By examining gas composition variations behind the leading shock, the chemical reaction rate, the reaction zone length, and thermodynamic parameters, two kinds of the abnormal detonation waves were identified. To explore their development mechanism, chemical reactions, reflected shocks and rarefaction waves were discussed, which interact with each other and affect the cellular detonation in different ways.
Resumo:
Direct numerical simulation (DNS) of supercritical CO2 turbulent channel flow has been performed to investigate the heat transfer mechanism of supercritical fluid. In the present DNS, full compressible Navier-Stokes equations and Peng-Robison state equation are solved. Due to effects of the mean density variation in the wall normal direction, mean velocity in the cooling region becomes high compared with that in the heating region. The mean width between high-and low-speed streaks near the wall decreases in the cooling region, which means that turbulence in the cooling region is enhanced and lots of fine scale eddies are created due to the local high Reynolds number effects. From the turbulent kinetic energy budget, it is found that compressibility effects related with pressure fluctuation and dilatation of velocity fluctuation can be ignored even for supercritical condition. However, the effect of density fluctuation on turbulent kinetic energy cannot be ignored. In the cooling region, low kinematic viscosity and high thermal conductivity in the low speed streaks modify fine scale structure and turbulent transport of temperature, which results in high Nusselt number in the cooling condition of the supercritical CO2.