22 resultados para ileal digestibility
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
The effect of feeding 0, 4, 8 and 16% rapeseed oil from 12-42 days of age was studied in broiler chickens on performance, digestibility of nutrients, and development of gastrointestinal tract, protein and energy metabolism. Thirty six female chickens (Ross 208) with initial body weight average 246 g were allocated to the four groups and kept pair-wise in metabolism cages. The chickens were fed similar amounts of metabolisable energy (ME) per day and similar amounts of essential amino acids relative to ME by adjusting with crystalline amino acids. The chickens were subjected to four balance periods each of five days with two 24 h measurements of gas exchange in two open-air-circuit respiration chambers inserted on the second and third day of each period. The addition of rapeseed oil increased the amount of gutfill indicating a reduced rate of passage and causing a hypertrophy of the gastrointestinal tract. There was a positive effect on feed utilisation as well as on digestibility especially of dietary fat together with higher utilisation of protein with addition of rapeseed oil. The partial fat digestibility of rapeseed oil estimated by regression was 91.1% and the partial metabolisability (ME/GE) of the rapeseed oil was estimated to 85% yielding an apparent metabolisable energy value of 34.30 MJ/kg.
Resumo:
The increasing trend of air temperature along with the climate warming has been accepted gradual-ly by scientists and by the general public. Qinghai-Xizang Plateau, a unique geographic unit due to high-altitude climate, is one of the most susceptible regions to climate warming. Its ecosystem is very fragile and sensi-tive to climate change. In order to get a better understanding of the impacts of climate warming on the nutrient contents of herbage grown in Qinghai-Xizang Plateau, a simulative study was implemented at Daban Moutain by using temperature differences resulted from sites selected at different altitudes and nutrient contents and in vitro digestibility were determined for assessing the quality of the grown herbage. There were significant downtrends in crude protein (CP), ether extract (EE) and nitrogen free extract (NFE) contents of herbage along with the increase of temperature. It had a positive correlation between temperature and content of acid detergent fibre (ADF), acid detergent lignin (ADL) in herbage. In vitro digestibility of herbage decreased along with the in-crease of temperature. The results of this study indicated that climate warming significantly influence nutrient contents and in vitro digestibility of herbage grown in Qinghai-Xizang Plateau. It is suggested that the future climate warming especially the gradual rise of the night temperature could cause negative effect on herbage quality grown in Qinghai-Xizang Plateau by decreasing CP, EE, and NFE contents and increasing some indi-gestible ingredients such as crude fibre (CF), neutral detergent fibre (NDF), ADF, and ADL. This, conse-quently, decreases the ruminant assimilation ability.
Resumo:
Our goal was to determine the effect of diets with different crude protein (CP) contents and metabolizable energy (W) levels on daily live-weight gain, apparent digestibility, and economic benefit of feedlot yaks on the Tibetan plateau during winter. Yaks were either 2- or 3-years old and randomly selected from the same herd. The 3-year-olds were placed into one of two experimental groups (A and B) and a control (CK1), and the two-year-olds were placed into one of three experimental groups (C, D and E) and a control (CK2) (N per group = 5). Yak in the control groups were allow graze freely, while those in the experimental groups yaks were fed diets higher in contains crude protein and metabolizable energy through a winter period inside a warming shed. Results indicated that live-weight gain of treatment groups was higher than their respective controls during experiment, and that daily live-weight gain of every 10 days among different treatments was significant difference (P < 0.05). In addition, apparent digestibility of different diets was linearly and positively related to feedlotting time, and feed conversion efficiency for A, C, D and E groups was quadratically related to feedlotting time (P < 0.01), however, feed conversion efficiency for B group was linearly and positively related to feedlotting time (P < 0.05). The economic benefit was 1.15 for A, 1.89 for B, 1.16 for C, 1.54 for D, and 4,52 for E. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Wheat straw was treated with microwave for 4 min and 8 min at a power of 750 W and frequency of 2,450 MHz. Chemical compositions of untreated, 4 min treated and 8 min treated Straws were analyzed and in sacco degradabilities of all these straws in yak rumens were measured. Microwave treatment didn't significantly (p > 0.05) affect the chemical composition of the straw. In sacco dry matter (DM) degradability of the straw after 18 h incubation in rumen was significantly (p < 0.01) improved by microwave treatment. In sacco crude protein (CP) degradability of the straw was not (p > 0.05) affected by microwave treatment. In sacco organic matter (OM) degradability of the straw was increased (p < 0.01) by around 20% for both the 4 min and 8 min microwave treatment, that of acid detergent fibre (ADF) was increased (p < 0.01) by 61.6% and 62.8%, and that of ash free ADF was enhanced by 72.1% and 69.6% for the 4 min and 8 min microwave treatment respectively. No significant difference was observed between the 4 min and 8 min microwave treatment on the degradability of DM, OM, CP, ADF and ash-free ADF of the straw.
Resumo:
A feeding trial A as conducted at the farm of Qinghai Academy of Animal and Veterinary Science, Xining, China during 1996 - 1997 with three dry yak cows (initial body weight 163 - 197 kg, age 5 - 6 years) by using 3 x 3 Latin Square Design to determine the effect of levels of feed intake on digestion, nitrogen balance and purine derivative excretion in urine of yak cows. The animals were fed oat hay (nitrogen 13.5 g/kg dry matter (DM), metabolisable energy 8.3 MJ/kg DM), i.e., 0.3, 0.6 and 0.9 of voluntary intake (VI). Each intake treatment lasted for 17 days and the samples (feeds, faeces and urine) were collected during last 7 days of each period. The results indicate that digestibility of dietary DM, OM, NDF and ash declined when intake levels increased from 0.3 to 0.9 VI [DM, from 66.1% to 59.1% (P < 0.05); OM, from 68.1% to 59.9% (P < 0.05); NDF, from 62.1% to 54.3% (P < 0.05); and ash, from 33.9% to 11.8% (P < 0.05)]. Around 0.10 g N/kg W-0.75 was deficient daily in yak cows at 0.3 VI, and positive N balances were observed at 0.6 and 0.9 VI. Intake levels significantly (P < 0.05) affected total PD excretion in yak urine. The proportion of allantoin increased (P < 0.05) and uric acid decreased (P < 0.05) as intake level of feed increased. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
An 8-week growth trial was carried out in a semi-recirculation system at 26 +/- 0.5 degrees C to investigate the optimal dietary carbohydrate-to-lipid (CHO:L) ratio for carnivorous Chinese longsnout catfish (Leiocassis longirostris Gunther). Triplicate tanks of fish were assigned to each of five isocaloric and isonitrogenous diets with different carbohydrate-to-lipid ratios (0.75, 1.48, 1.98, 2.99 and 5.07). The results showed that a higher specific growth rate (SGR) and feed rate (FR) were observed in the fish fed diet ratios of 1.98 CHO:L (P < 0.05). Overloading dietary carbohydrate (5.07 CHO:L ratio) caused skeletal malformations. Apparent digestibility of dry matter (ADC(d)) significantly increased with dietary CHO:L ratio (P < 0.05), while significantly higher apparent digestibility of protein (ADC(p)) and apparent digestibility of energy (ACD(e)) was observed only in the 1.98 CHO:L group (P < 0.05). Whole body contents of dry matter, lipid and energy significantly increased as the CHO:L ratio decreased (P < 0.05). The hepatosomatic index (HSI) was highest at 1.98 CHO:L ratio (P < 0.05). Highest dietary CHO:L ratio resulted in lower liver glycogen, liver lipid, plasma glucose and plasma triacylglycerol (P < 0.05), whereas there was no significant difference in plasma total cholesterol (P > 0.05). High dietary CHO:L ratio caused pathological changes in fish morphology and liver histology. Based on maximum growth, the optimal carbohydrate-to-lipid ratio was 1.98 for Chinese longsnout catfish.
Resumo:
The growth and energy budget for F-2 'all-fish' growth hormone gene transgenic common carp Cyprinus carpio of two body sizes were investigated at 29.2 degrees C for 21 days. Specific growth rate, feed intake, feed efficiency, digestibility coefficients of dry matter and protein, gross energy intake (I-E), and the proportion of I-E utilized for heat production (H-E) were significantly higher in the transgenics than in the controls. The proportion of I-E directed to waste products [faecal energy (F-E) and excretory energy loss (Z(E) + U-E) where Z(E) is through the gills and U-E through the kidney], and the proportion of metabolizable energy (M-E) for recovered energy (R-E) were significantly lower in the transgenics than in the controls. The average energy budget equation of transgenic fish was as follows: 100 I-E = 19.3 F-E + 6.0 (Z(E) + U-E) + 45.2 H-E + 29.5 R-E or 100 M-E = 60.5 H-E + 39.5 R-E. The average energy budget equation of the controls was: 100 I-E = 25.2 F-E + 7.4 (Z(E) + U-E) + 35.5 H-E + 31.9 R-E or 100 M-E = 52.7 H-E + 47.3 R-E. These findings indicate that the high growth rate of 'all-fish' transgenic common carp relative to their non-transgenic counterparts was due to their increased feed intake, reduced lose of waste productions and improved feed efficiency. The benefit of the increased energy intake by transgenic fish, however, was diminished by their increased metabolism.
Resumo:
A 11-week growth trial was conducted in a flow-through system with juvenile gibel carp Carassius auratus gibelio to evaluate the effects of gradual replacement of fish meal (FM) by meat and bone meal (MBM) on growth performance, phosphorus (P) and nitrogen (N) loading. Six isonitrogenous (crude protein: 410 g kg(-1)) and isoenergetic (gross energy: 18 kJ g(-1)) diets were formulated. FM was used as the control protein. In the other five diets, 20, 40, 60, 80 and 100% FM protein was substituted with MBM20, MBM40, MBM60, MBM80, MBM100, respectively. Total P content in the diets ranged from 16.0 to 28.3 g kg(-1) and the available P was 5.0-6.6 g kg(-1). The results showed that the best growth was achieved with fish fed on the control diet and MBM20. Final body weight, weight gain, feed efficiency, protein retention efficiency and energy retention efficiency decreased with increased dietary MBM. No significant differences were found in the feeding rate and hepatosomatic index between the groups. Apparent digestibility coefficient (ADC) of dry matter, protein and P decreased with increase in dietary MBM, while there were no significant differences in the ADC of energy. P and N retention decreased linearly while P and N loading increased linearly with the increased dietary MBM levels. No significant differences were observed in the activity of alkaline phosphatase, aspartate aminotransferase and alanine aminotransferase, as well as pyruvate kinase in liver or in serum. Total superoxide dismutase activity in MBM20 was significantly higher than that of MBM100.
Resumo:
Six isonitrogenous (crude protein content: 38%) and isoenergetic (gross energy content: 17 kJ g(-1)) diets were formulated to investigate the effects of inclusion of blue-green algae meal on gibel carp (Carassius auratus gibelio). In each diet, 15% of the protein was supplied by fishmeal; the remainder was supplied by soybean meal and blue-green algae meal. Diet 1 was used as control with no blue-green algae meal whereas the content in diets 2-6 was 15.15, 29.79, 44.69, 59.58 and 74.48%, respectively. Each diet was fed to five groups of gibel carp for 12 weeks in a flow-through system. Final body weight and specific growth rate (SGR) of fish fed diet 5 were significantly lower than the control diet (P < 0.05). Mortality of gibel carp increased with increase in algae meal inclusion (P < 0.05), but there was no significant difference between fish fed diets 3-6 (P > 0.05). Feed conversion efficiency (FCE) decreased with the increase in algae meal inclusion (P < 0.05). Fish-fed diet 6 showed the highest feeding rate (P < 0.05), while there were no significant differences among the other groups (P > 0.05). Apparent digestibility coefficient of dry matter, protein, and energy decreased with increasing algae meal inclusion in the diets (P < 0.05). Aspartate aminotransferase (GOT) activity in the liver was not significantly different among groups (P > 0.05). Liver alanine aminotransferase (GPT) activity of fish-fed diets 4, 5 and 6 was significantly lower than the control diet (diet 1; P < 0.05). Microcystins in the muscle, liver, gallbladder, and spleen increased with increasing algae inclusion (P < 0.05).
Resumo:
The nutritional function of monosaccharides, disaccharides and polysaccharides for omnivorous gibel carp and carnivorous Chinese longsnout catfish were investigated and the ability of these two species to utilize carbohydrates was compared. For each species, triplicate groups of fish were assigned to each of five groups of isoenergetic and isonitrogenous experimental diets with different carbohydrate sources: glucose, sucrose, dextrin, soluble starch (acid-modified starch) and alpha-cellulose. The carbohydrates were included at 60 g kg(-1) in Chinese longsnout catfish diets and at 200 g kg(-1) in gibel carp diets. A growth trial was carried out in a recirculation system at 27.8 +/- 1.9 degrees C for 8 weeks. The results showed that fish with different food habits showed difference in the utilization of carbohydrate sources. For gibel carp, better specific growth rate (SGR) and feed efficiency (FE) were observed in fish fed diets containing soluble starch and cellulose, but for Chinese longsnout catfish, better SGR and FE were observed in fish fed diets containing dextrin and sucrose. Apparent digestibility coefficient of dry matter (ADC(d)) and apparent digestibility coefficient of energy (ADC(e)) were significantly affected by dietary carbohydrate sources in gibel carp. ADC(d) and ADC(e) significantly decreased as dietary carbohydrate complexity increased in Chinese longsnout catfish except that glucose diet had medium ADC(d) and ADC(e). In both species, no significant difference of apparent digestibility coefficient of protein was observed between different carbohydrate sources. Dietary carbohydrate sources significantly affected body composition, and liver phosphoenolpyruvate carboxykinase (PEPCK), pyruvate kinase (PK), glucose 6-phosphate dehydrogenase (G6PD) and malic enzyme (ME) activities also varied according to dietary carbohydrate complexity. Fish with different food habits showed different abilities to synthesize liver glycogen, and the liver glycogen content in gibel carp was significantly higher than in Chinese longsnout catfish. The influence of carbohydrate source on gluconeogenesis and lipogenesis was also different in the two fish species.
Resumo:
Triplicate groups of gibel carp Carassius auratus gibelio Bloch (initial body weight: 4.89 g) were fed for 8 weeks at 24.8-30.8 degrees C with nine isonitrogenous and isoenergetic diets. The control diet (F1) used white fishmeal (FM) as the sole protein source. In the other eight diets (F2-F9), 40.5-100% of FM protein was substituted by poultry by-product meal (PBM) at 8.5% increments. The specific growth rate (SGR), feed efficiency ratio, protein efficiency ratio, protein retention efficiency and energy retention rate for fish fed PBM diets (F2-F9) were all higher, but not always significantly, than those for fish fed F1. All apparent digestibility coefficients for fish fed PBM diets were lower than those for fish fed F1. Fish fed F1 had a significantly higher hepatosomatic index value than fish fed PBM diets (P < 0.05). No significant (P > 0.05) effect of diet was found in whole-body moisture and fat content. Whole-body protein and energy content for fish fed PBM diets were slightly higher than that for fish fed F1. The optimal replacement level of FM by PBM was estimated by second-order polynomial regression to be 66.5% in protein.
Resumo:
The capacity of hybrid tilapia Oreochromis mossambicus x O. niloticus [23.2 +/- 0.2 g (mean +/- SE)] to show compensatory growth was assessed in an 8-week experiment. Fish were deprived of feed for 1, 2 and 4 weeks, and then fed to satiation for 4 weeks; fish fed to satiation during the experiment served as control. Water temperature gradually declined from 28.1 to 25.5 degrees C throughout the experiment. Specific growth rate (SGR) decreased with progressive food deprivation. At the end of deprivation, body weight was lower in the deprived fish than in the control. Fish deprived for 4 weeks exhibited lower contents of lipids and energy in whole body, and higher moisture content and ratio of protein to energy (P/E) than those of the control; they also consumed feed faster than the control when normal feeding was resumed. All deprived fish showed higher food intake (FI) than that of the control during re-alimentation; however, enhanced SGR was only observed in the fish deprived for 4 weeks. There were no significant differences in digestibility of protein and energy, food efficiency (FE) or energy retention efficiency between the control and deprived fish. At the end of re-alimentation, deprived fish failed to catch up in body weight with the control, while content of moisture, lipids and energy, and P/E in whole body of the deprived fish did not significantly differ from that of the control. The results of the experiment revealed that the hybrid tilapia reared in freshwater showed partial capacity for compensatory growth following food deprivation of 4 weeks, and that growth compensation was due mainly to increased FI, rather than to improved FE.
Resumo:
In this study, we investigated the effects of animal-plant protein ratio in extruded and expanded diets on nutrient digestibility, nitrogen and energy budgets of juvenile soft-shelled turtle (Pelodiscus sinensis). Four extruded and expanded feeds (diets 1-4) were formulated with different animal-plant protein ratios (diet 1, 1.50:1; diet 2, 2.95:1; diet 3, 4.92:1; diet 4, 7.29:1). The apparent digestibility coefficients (ADCs) of dry matter and crude lipid for diet 1 were significantly lower than those for diets 2-4. There was no significant difference in crude protein digestibility among diets 1-4. The ADC of carbohydrate was significantly increased with the increase in animal-plant protein. Although nitrogen intake rate, faecal nitrogen loss rate and excretory nitrogen loss rate of turtles fed diet 1 were significantly higher than those fed diets 2-4, nitrogen retention rate, net protein utilization and biological value of protein in these turtles were significantly lower than those fed diets 2-4. In addition, energy intake rate, excretory energy loss rate and heat production rate of turtles fed diet 1 were also significantly higher than those fed diets 2-4. Faecal energy loss was significantly reduced with the increase in the animal-plant protein ratio. The ADC of energy and assimilation efficiency of energy significantly increased with a higher animal-plant protein ratio. The growth efficiency of energy in the group fed diet 1 was significantly lower than those in the groups fed diets 2-4. Together, our results suggest that the optimum animal-plant protein ratio in extruded and expanded diets is around 3:1.
Resumo:
Triplicate groups of gibel carp Carassius auratus gibelio (initial body weight: 5.25 +/- 0.02 g) were fed for 8 weeks at 20-25 degreesC on five isonitrogenous (crude protein: 400 g kg(-1)) and isoenergetic diets (gross energy: 17 kJ g(-1)). Meat and bone meal (MBM) or poultry by-product meal (PBM) were used to replace fish meal at different levels of protein. The control diet contained fish meal as the sole protein source. In the other four diets, 150 or 500 g kg(-1) of fish meal protein was substituted by MBM (MBM15, MBM50) or PBM (PBM15, PBM50). The results showed that feeding rate for the MBM50 group was significantly higher than for other groups except the PBM50 group (P < 0.05). Growth rate in the MBM15 group was significantly higher than that in the control (P < 0.05), while there was no significant difference in growth between the control and other groups (P > 0.05). Feed efficiency and protein efficiency ratio in MBM50 was significantly lower while that in MBM15 was significantly higher (P < 0.05). Replacement of fish meal by MBM at 500 g kg(-1) protein significantly decreased apparent dry matter digestibility (ADC(D)) and gross energy (ADC(E)) while apparent protein digestibility (ADC(P)) was significantly decreased by the replacement of MBM or PBM (P < 0.05). The results suggest that MBM and PBM could replace up to 500 g kg(-1) of fish meal protein in diets for gibel carp without negative effects on growth while 150 g kg(-1) replacement by MBM protein improved feed utilization.
Resumo:
Juvenile (3.0 +/- 0.2 g) gibel carp (Carassius auratus gibelio ) were fed to satiation for 8 weeks to investigate the effect of feeding frequency on growth, feed utilization and size variation. Five feeding frequencies were tested: two meals per day (M2), three meals per day (M3), four meals per day (M4), 12 meals per day (M12) and 24 meals per day (M24). The results showed that daily food intake increased significantly with the increase in feeding frequency and there was no significant difference between daily food intakes in M12 and M24 treatments. Growth rate, feed efficiency increased significantly with increasing feeding frequencies. Size variation was not affected by feeding frequency. Apparent digestibility of dry matter was not influenced by feeding frequency, while apparent digestibility of protein and energy increased significantly at high feeding frequencies. The feeding frequency had no significant effect on the moisture, lipid, protein, or energy contents of gibel carp, while the ash content decreased with increased feeding frequency. It was recommended that 24 meals per day was the optimal feeding frequency for juvenile gibel carp.