78 resultados para hormone induction
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
Spawning behavior of artificially matured Japanese eels Anguillo japonica in captivity was investigated using a DVD Video image system. Following a routine hormone treatment technique for this fish, female eels were artificially matured by weekly intramuscular injections of salmon pituitary extracts (SPE) at a dosage of 40 mg kg(-1) BW for a total of 7-11 doses to induce ovarian maturation, while male eels received weekly intramuscular injections of human chorionic gonadotropin (HCG) at a dosage of 1000 IU kg(-1) BW for a total of 6-11 doses at 18 degrees C to induce testicular maturation in a separate aquarium. In this experiment, three pairs of such hormone-treated matured eels were acclimatized in seawater in 1.5 m(3) experimental aquaria with or without shelters at 20 degrees C for 24 h. Twenty four hours after the acclimatization terminated, the females received SPE injections to boost maturation and ovulation. Twenty four hours following these injections, the females received injections of HCG (1000 IU per fish, HCG injection) and 17 alpha-hydroxyprogesterone (2 mg per fish) to induce ovulation, while males were given HCG injections (1000 IU per fish, HCG injection) to induce spermiation. Video taping started after the 24 h acclimatization terminated and last for a total of 96 h. Before the HCG injections, both sexes were inactive, staying on the bottom or in shelters if available. Following these HCG injections, they became active and frequently left the bottom swimming in the water column. During the 24 h following HCG injections, activity accounted for 67% and 45% of the total activity in no shelter treatment for females and males, respectively, in comparison with 77% and 78% in shelter treatment. Activity was significantly more pronounced during this phase than during other phases for each sex in either shelter treatment. Egg release and sperm ejection occurred in the water column around the time eels' activity reached peaks. Eels either returned into the shelters or stayed motionlessly on the bottom of the aquaria after egg release and sperm ejection. Eight out of nine (89%) females in no shelter treatment spontaneously released eggs with a total of 11 batches 14-18 h following HCG injections, in contrast with four out of nine (44%) females releasing eggs for 4 batches 16-20 h in shelter treatment. Males arrived at activity peaks 11-13 h following HCG injections in no shelter treatment, 2-4 h ahead of the females (14-16 h), in comparison with 8-11 h in shelter treatment with 5-6 h ahead of the females (14-17 h). Courtship behavior indicative of spawning such as pairing, chasing and touching bodies was not observed in the eels in this study. However, on many occasions, eels of both sexes (male-female or female-female) were found to "cruise together" in water column for a short time period or frequently come together prior to releasing eggs and ejecting sperm, suggesting the possibility of group mating in artificially matured Japanese eels. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
A mathematical model is presented for the numerical simulation of the flow, temperature, and concentration fields in an rf plasma chemical reactor. The simulation is performed assuming chemical equilibrium. The extent of validity of this assumption is discussed. The system considered is the reaction of SiCl4 and NH3 for the production of Si3N4.
Resumo:
A kinetic model has been developed for the prediction of the concentration gelds in an rf plasma reactor. A sample calculation for a SiCl4/H2 system is then performed. The model considers the mixing processes along with the kinetics of seven reactions involving the decomposition of these reactants. The results obtained are compared to those assuming chemical equilibrium. The predictions indicate that an equilibrium assumption will result in lower predicted temperature fields in the reactor. Furthermore, for the chemical system considered here, while differences exist between the concentration fields obtained by the two models, the differences are not substantial.
Bifunctional modulating effects of an indigo dimer (bisindigotin) to CYP1A1 induction in H4IIE cells
Induction of defense responses against Alternaria rot by different elicitors in harvested pear fruit
Resumo:
Effects of age and season on the developmental capacity of oocytes from unstimulated and FSH-stimulated rhesus monkeys were examined, Immature cumulus-oocyte complexes were matured in vitro in modified CMRL-1066 medium containing 20% bovine calf serum and
Resumo:
The growth hormone (GH) gene family represents an erratic and complex evolutionary pattern, involving many evolutionary events, such as multiple gene duplications, positive selection, the birth-and-death process and gene conversions. In the present study, we cloned and sequenced GH-like genes from three species of New World monkeys (NWM). Phylogenetic analysis strongly suggest monophyly for NWM GH-like genes with respect to those of Old World monkeys (OWM) and hominoids, indicating that independent gene duplications have occurred in NWM GH-like genes. There are three main clusters of genes in putatively functional NWM GH-like genes, according to our gene tree. Comparison of the ratios of nonsynonymous and synonymous substitutions revealed that these three clusters of genes evolved under different kinds of selective pressures. Detailed analysis of the evolution of pseudogenes showed that the evolutionary pattern of this gene family in platyrrhines is in agreement with the so-called birth-and-death process.
Resumo:
Pituitary growth hormone (GH) evolves very slowly in most of mammals, but the evolutionary rates appear to have increased markedly on two occasions during the evolution of primates and ruminants. To investigate the evolutionary pattern of growth hormone receptor (GHR), we sequenced the extracellular domain of GHR genes from four primate species. Our results suggested that GHR in mammal also shows an episodic evolutionary pattern, which is consistent with that observed in pituitary growth hormone. Further analysis suggested that this pattern of rapid evolution observed in primates and ruminants is likely the result of coevolution between pituitary growth hormone and its receptor.