8 resultados para high-fidelity

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report the experimental results of using the soft lithography method for replication of Dammann gratings. By using an elastomeric stamp, uniform grating structures were transferred to the LTV-curable polymer. To evaluate the quality of the replication, diffraction images and light intensity were measured. Compared with the master devices, the replicas of Dammann gratings show a slight deviation in both surface relief profile and optical performance. Experimental results demonstrated that high-fidelity replication of Dammann gratings is realized by using soft lithography with low cost and high throughput. (C) 2008 Optical Society of America.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

光栅复制是降低光栅制造成本,提高产量的一条有效途径。研究了利用紫外压印技术复制微结构光栅的方法。使用玻璃基底矩形浮雕结构的微结构光栅作为母光栅,给出了利用聚二甲基硅氧烷(PDMS)制作光栅模具和在光敏聚合物材料上复制微结构光栅的详细过程。经过优化工艺条件,成功地复制了一系列不同周期和开口比的微结构光栅,测试了复制光栅和母光栅的衍射图像和0级与±1级的衍射强度,结果表明,复制光栅和母光栅的衍射图像与光强分布基本一致。

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Rainbow trout historic H3 (RH3) promoter was cloned via high fidelity PCR. The cloned RH3 promoter was inserted into a promoter-lacked vector pEGFP-1, resulting in an expression vector pRH3FGFP-1. The linearized pRH3EGFP-1 was microinjected into fertilized eggs of rare minnows and the sequential embryogenetic processes were monitored under a fluorescent microscope. Strong green fluorescence was ubiquitously observed at as early as the gastrula stage and then in various tissues at the fry stage. The results indicate that RH3 promoter, as a piscine promoter, could serve in producing transgenic Cyprinoid such as rare minnow. Promoter activity of RH3, CMV and common carp beta-actin (CA) were compared in rare minnow by the expression of respective recombinant EGFP vectors. The expression of pCMVEGFP occurred earlier than the following one, pRH3EGFP-1, and then pCAEGFP during the embryogenesis of the transgenics. Their expression activities demonstrated that the CMV promoter is the strongest one, followed by the CA and then the RH3.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper applies data coding thought, which based on the virtual information source modeling put forward by the author, to propose the image coding (compression) scheme based on neural network and SVM. This scheme is composed by "the image coding (compression) scheme based oil SVM" embedded "the lossless data compression scheme based oil neural network". The experiments show that the scheme has high compression ratio under the slightly damages condition, partly solve the contradiction which 'high fidelity' and 'high compression ratio' cannot unify in image coding system.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this article we present a mechanical pattern transfer process where a thermosetting polymer mold instead of a metal, dielectric, ceramic, or semiconductor master made by conventional lithography was used as the master to pattern thermoplastic polymers in hot embossing lithography. The thermosetting polymer mold was fabricated by a soft lithography strategy, microtransfer molding. For comparison, the thermosetting polymer mold and the silicon wafer master were both used to imprint the thermoplastic polymer, polymethylmethacrylate. Replication of the thermosetting polymer mold and the silicon wafer master was of the same quality. This indicates that the thermosetting polymer mold could be used for thermoplastic polymer patterning in hot embossing lithography with high fidelity.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Based on the fractal theories, contractive mapping principles as well as the fixed point theory, by means of affine transform, this dissertation develops a novel Explicit Fractal Interpolation Function(EFIF)which can be used to reconstruct the seismic data with high fidelity and precision. Spatial trace interpolation is one of the important issues in seismic data processing. Under the ideal circumstances, seismic data should be sampled with a uniform spatial coverage. However, practical constraints such as the complex surface conditions indicate that the sampling density may be sparse or for other reasons some traces may be lost. The wide spacing between receivers can result in sparse sampling along traverse lines, thus result in a spatial aliasing of short-wavelength features. Hence, the method of interpolation is of very importance. It not only needs to make the amplitude information obvious but the phase information, especially that of the point that the phase changes acutely. Many people put forward several interpolation methods, yet this dissertation focuses attention on a special class of fractal interpolation function, referred to as explicit fractal interpolation function to improve the accuracy of the interpolation reconstruction and to make the local information obvious. The traditional fractal interpolation method mainly based on the randomly Fractional Brown Motion (FBM) model, furthermore, the vertical scaling factor which plays a critical role in the implementation of fractal interpolation is assigned the same value during the whole interpolating process, so it can not make the local information obvious. In addition, the maximal defect of the traditional fractal interpolation method is that it cannot obtain the function values on each interpolating nodes, thereby it cannot analyze the node error quantitatively and cannot evaluate the feasibility of this method. Detailed discussions about the applications of fractal interpolation in seismology have not been given by the pioneers, let alone the interpolating processing of the single trace seismogram. On the basis of the previous work and fractal theory this dissertation discusses the fractal interpolation thoroughly and the stability of this special kind of interpolating function is discussed, at the same time the explicit presentation of the vertical scaling factor which controls the precision of the interpolation has been proposed. This novel method develops the traditional fractal interpolation method and converts the fractal interpolation with random algorithms into the interpolation with determined algorithms. The data structure of binary tree method has been applied during the process of interpolation, and it avoids the process of iteration that is inevitable in traditional fractal interpolation and improves the computation efficiency. To illustrate the validity of the novel method, this dissertation develops several theoretical models and synthesizes the common shot gathers and seismograms and reconstructs the traces that were erased from the initial section using the explicit fractal interpolation method. In order to compare the differences between the theoretical traces that were erased in the initial section and the resulting traces after reconstruction on waveform and amplitudes quantitatively, each missing traces are reconstructed and the residuals are analyzed. The numerical experiments demonstrate that the novel fractal interpolation method is not only applicable to reconstruct the seismograms with small offset but to the seismograms with large offset. The seismograms reconstructed by explicit fractal interpolation method resemble the original ones well. The waveform of the missing traces could be estimated very well and also the amplitudes of the interpolated traces are a good approximation of the original ones. The high precision and computational efficiency of the explicit fractal interpolation make it a useful tool to reconstruct the seismic data; it can not only make the local information obvious but preserve the overall characteristics of the object investigated. To illustrate the influence of the explicit fractal interpolation method to the accuracy of the imaging of the structure in the earth’s interior, this dissertation applies the method mentioned above to the reverse-time migration. The imaging sections obtained by using the fractal interpolated reflected data resemble the original ones very well. The numerical experiments demonstrate that even with the sparse sampling we can still obtain the high accurate imaging of the earth’s interior’s structure by means of the explicit fractal interpolation method. So we can obtain the imaging results of the earth’s interior with fine quality by using relatively small number of seismic stations. With the fractal interpolation method we will improve the efficiency and the accuracy of the reverse-time migration under economic conditions. To verify the application effect to real data of the method presented in this paper, we tested the method by using the real data provided by the Broadband Seismic Array Laboratory, IGGCAS. The results demonstrate that the accuracy of explicit fractal interpolation is still very high even with the real data with large epicenter and large offset. The amplitudes and the phase of the reconstructed station data resemble the original ones that were erased in the initial section very well. Altogether, the novel fractal interpolation function provides a new and useful tool to reconstruct the seismic data with high precision and efficiency, and presents an alternative to image the deep structure of the earth accurately.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

With the development of oil and gas exploration, the exploration of the continental oil and gas turns into the exploration of the subtle oil and gas reservoirs from the structural oil and gas reservoirs in China. The reserves of the found subtle oil and gas reservoirs account for more than 60 percent of the in the discovered oil and gas reserves. Exploration of the subtle oil and gas reservoirs is becoming more and more important and can be taken as the main orientation for the increase of the oil and gas reserves. The characteristics of the continental sedimentary facies determine the complexities of the lithological exploration. Most of the continental rift basins in East China have entered exploration stages of medium and high maturity. Although the quality of the seismic data is relatively good, this areas have the characteristics of the thin sand thickness, small faults, small range of the stratum. It requests that the seismic data have high resolution. It is a important task how to improve the signal/noise ratio of the high frequency of seismic data. In West China, there are the complex landforms, the deep embedding the targets of the prospecting, the complex geological constructs, many ruptures, small range of the traps, the low rock properties, many high pressure stratums and difficulties of boring well. Those represent low signal/noise ratio and complex kinds of noise in the seismic records. This needs to develop the method and technique of the noise attenuation in the data acquisition and processing. So that, oil and gas explorations need the high resolution technique of the geophysics in order to solve the implementation of the oil resources strategy for keep oil production and reserves stable in Ease China and developing the crude production and reserves in West China. High signal/noise ratio of seismic data is the basis. It is impossible to realize for the high resolution and high fidelity without the high signal/noise ratio. We play emphasis on many researches based on the structure analysis for improving signal/noise ratio of the complex areas. Several methods are put forward for noise attenuation to truly reflect the geological features. Those can reflect the geological structures, keep the edges of geological construction and improve the identifications of the oil and gas traps. The ideas of emphasize the foundation, give prominence to innovate, and pay attention to application runs through the paper. The dip-scanning method as the center of the scanned point inevitably blurs the edges of geological features, such as fault and fractures. We develop the new dip scanning method in the shap of end with two sides scanning to solve this problem. We bring forward the methods of signal estimation with the coherence, seismic wave characteristc with coherence, the most homogeneous dip-sanning for the noise attenuation using the new dip-scanning method. They can keep the geological characters, suppress the random noise and improve the s/n ratio and resolution. The rutine dip-scanning is in the time-space domain. Anew method of dip-scanning in the frequency-wavenumber domain for the noise attenuation is put forward. It use the quality of distinguishing between different dip events of the reflection in f-k domain. It can reduce the noise and gain the dip information. We describe a methodology for studying and developing filtering methods based on differential equations. It transforms the filtering equations in the frequency domain or the f-k domain into time or time-space domains, and uses a finite-difference algorithm to solve these equations. This method does not require that seismic data be stationary, so their parameters can vary at every temporal and spatial point. That enhances the adaptability of the filter. It is computationally efficient. We put forward a method of matching pursuits for the noise suppression. This method decomposes any signal into a linear expansion of waveforms that are selected from a redundant dictionary of functions. These waveforms are chosen in order to best match the signal structures. It can extract the effective signal from the noisy signal and reduce the noise. We introduce the beamforming filtering method for the noise elimination. Real seismic data processing shows that it is effective in attenuating multiples and internal multiples. The s/n ratio and resolution are improved. The effective signals have the high fidelity. Through calculating in the theoretic model and applying it to the real seismic data processing, it is proved that the methods in this paper can effectively suppress the random noise, eliminate the cohence noise, and improve the resolution of the seismic data. Their practicability is very better. And the effect is very obvious.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Eight experiments tested how object array structure and learning location influenced the establishing and utilization of self-to-object and object-to-object spatial representations in locomotion and reorientation. In Experiment 1 to 4, participants learned either at the periphery of or amidst regular or irregular object array, and then pointed to objects while blindfolded in three conditions: before turning (baseline), after rotating 240 degrees (updating), and after disorientation (disorientation). In Experiment 5 to 8, participants received instruction to keep track of self-to-object or object-to-object spatial representations before rotation. In each condition, the configuration error, which means the standard deviation of the means per target object of the signed pointing errors, was calculated as the index of the fidelity of representation used in each condition. Results indicate that participants form both self-to-object and object-to-object spatial representations after learning an object-array. Object-array structure influences the selection of representation during updating. By default, object-to-object spatial representation is updated when people learned the regular object-array structure, and self-to-object spatial representation is updated when people learned the irregular object array. But people could also update the other representation when they are required to do so. The fidelity of representations will confine this kind of “switch”. People could only “switch” from a low fidelity representation to a high fidelity representation or between two representations of similar fidelity. They couldn’t “switch” from a high fidelity representation to a low fidelity representation. Leaning location might influence the fidelity of representations. When people learned at the periphery of object array, they could acquire both self-to-object and object-to-object spatial representations of high fidelity. But when people learned amidst the object array, they could only acquire self-to-object spatial representation of high fidelity, and the fidelity of object-to-object spatial representation was low.