11 resultados para gynecological cancers
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
As a recently developed and powerful classification tool, probabilistic neural network was used to distinguish cancer patients from healthy persons according to the levels of nucleosides in human urine. Two datasets (containing 32 and 50 patterns, respectively) were investigated and the total consistency rate obtained was 100% for dataset 1 and 94% for dataset 2. To evaluate the performance of probabilistic neural network, linear discriminant analysis and learning vector quantization network, were also applied to the classification problem. The results showed that the predictive ability of the probabilistic neural network is stronger than the others in this study. Moreover, the recognition rate for dataset 2 can achieve to 100% if combining, these three methods together, which indicated the promising potential of clinical diagnosis by combining different methods. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
Raman spectroscopy on single, living epithelial cells captured in a laser trap is shown to have diagnostic power over colorectal cancer. This new single-cell technology comprises three major components: primary culture processing of human tissue samples to produce single-cell suspensions, Raman detection on singly trapped cells, and diagnoses of the cells by artificial neural network classifications. it is compared with DNA flow cytometry for similarities and differences. Its advantages over tissue Raman spectroscopy are also discussed. In the actual construction of a diagnostic model for colorectal cancer, real patient data were taken to generate a training set of 320 Raman spectra and, a test set of 80. By incorporating outlier corrections to a conventional binary neural classifier, our network accomplished significantly better predictions than logistic regressions, with sensitivity improved from 77.5% to 86.3% and specificity improved from 81.3% to 86.3% for the training set and moderate improvements for the test set. Most important, the network approach enables a sensitivity map analysis to quantitate the relevance of each Raman band to the normal-to-cancer transform at the cell level. Our technique has direct clinic applications for diagnosing cancers and basic science potential in the study of cell dynamics of carcinogenesis. (C) 2007 Society of Photo-Optical Instrumentation Engineers.
Resumo:
A single-cell diagnostic technique for epithelial cancers is developed by utilizing laser trapping and Raman spectroscopy to differentiate cancerous and normal epithelial cells. Single-cell suspensions were prepared from surgically removed human colorectal tissues following standard primary culture protocols and examined in a near-infrared laser-trapping Raman spectroscopy system, where living epithelial cells were investigated one by one. A diagnostic model was built on the spectral data obtained from 8 patients and validated by the data from 2 new patients. Our technique has potential applications from epithelial cancer diagnosis to the study of cell dynamics of carcinogenesis. (c) 2006 Optical Society of America.
Resumo:
Raman spectroscopy on single, living epithelial cells captured in a laser trap is shown to have diagnostic power over colorectal cancer. This new single-cell technology comprises three major components: primary culture processing of human tissue samples to produce single-cell suspensions, Raman detection on singly trapped cells, and diagnoses of the cells by artificial neural network classifications. it is compared with DNA flow cytometry for similarities and differences. Its advantages over tissue Raman spectroscopy are also discussed. In the actual construction of a diagnostic model for colorectal cancer, real patient data were taken to generate a training set of 320 Raman spectra and, a test set of 80. By incorporating outlier corrections to a conventional binary neural classifier, our network accomplished significantly better predictions than logistic regressions, with sensitivity improved from 77.5% to 86.3% and specificity improved from 81.3% to 86.3% for the training set and moderate improvements for the test set. Most important, the network approach enables a sensitivity map analysis to quantitate the relevance of each Raman band to the normal-to-cancer transform at the cell level. Our technique has direct clinic applications for diagnosing cancers and basic science potential in the study of cell dynamics of carcinogenesis. (C) 2007 Society of Photo-Optical Instrumentation Engineers.
Resumo:
Upregulated gene 19 (U19)/ELL-associated factor 2 (Eaf2) is a potential human tumor suppressor that exhibits frequent allelic loss and downregulation in high-grade prostate cancer. U19/Eaf2, along with its homolog Eaf1, has been reported to regulate transcriptional elongation via interaction with the eleven-nineteen lysine-rich leukemia (ELL) family of proteins. To further explore the tumor-suppressive effects of U19/Eaf2, we constructed and characterized a murine U19/Eaf2-knockout model. Homozygous or heterozygous deletion of U19/Eaf2 resulted in high rates of lung adenocarcinoma, B-cell lymphoma, hepato cellular carcinoma and prostate intraepithelial neoplasia. Within the mouse prostate, U19/Eaf2 defficiency enhanced cell proliferation and increased epithelial cell size. The knockout mice also exhibited cardiac cell hypertrophy. These data indicate a role for U19/Eaf2 in growth suppression and cell size control as well as argue for U19/Eaf2 as a novel tumor suppressor in multiple mouse tissues. The U19/Eaf2 knockout mouse also provides a unique animal model for three important cancers: lung adenocarcinoma, B-cell lymphoma and hepatocellular carcinoma.
Resumo:
The accurate cancer classification is of great importance in clinical treatment. Recently, the DNA microarray technology provides a promising approach to the diagnosis and prognosis of cancer types. However, it has no perfect method for the multiclass classification problem. The difficulty lies in the fact that the data are of high dimensionality with small sample size. This paper proposed an automatic classification method of multiclass cancers based on Biomimetic pattern recognition (BPR). To the public GCM data set, the average correct classification rate reaches 80% under the condition that the correct rejection rate is 81%.
Resumo:
胃癌和肠癌是常见的威胁人类健康的消化道恶性肿瘤,其发生发展涉及多因 子的作用及调控。其中,在胃肠道都有表达的蛋白酶激活受体(PARs)和三叶 因子蛋白(TFFs)家族都参与肿瘤发生发展的调控过程。正常生理条件下,PARs 的表达与胃肠道消化液的分泌和肌肉的收缩舒张相关。同时,在胃肠道肿瘤的发 生、浸润和转移过程中PARs和TFF2也发挥了作用。而PAR-4,除了具有凝血酶 激活后的血小板聚集功能外,还参与感染、细胞迁移和肿瘤的发生发展。在溃疡 性结肠炎,肠癌组织以及某些肠癌细胞系中都出现PAR4的异常表达,而这种异 常表达可能作为启动肠癌发生的重要环节。TFFs家族蛋白能够对抗粘膜损伤并 且参与修复以发挥保护胃肠道的功能。在肿瘤发生中,三叶因子既有报道作为肿 瘤抑制因子,又有报道作为潜在的肿瘤促进因子。含两个三叶因子结构域的 TFF2,主要表达在胃粘膜的颈细胞。在胃溃疡、慢性萎缩性胃炎及胃癌中,TFF2 的表达具有下降的趋势;而且分化程度越低的胃癌,TFF2的表达量越少,这是 因为TFF2的表达与胃粘膜细胞的增殖和恶性转移相关。在肠道,TFF2可以抑制 一氧化氮(NO)的生成以调节由NO引起的肠炎;在肠炎老鼠的模型中,TFF2 能减轻炎症和溃疡发生的程度,表明TFF2可能通过调节机体的免疫反应来抑制 肠道炎症的发生。 而本实验室前期对大蹼铃蟾皮肤分泌物中获得的新型血小板激动蛋白 -Bm-TFF2与PARs相互作用的实验,促使我们去研究人TFF2与PARs的关系。由 于免疫组化提示TFF2和PAR4在正常胃黏膜中都分布在从基底部到中间的位置, 而且TFF2第二个Loop区序列的保守性,以及和PAR4连接配体(tethered-ligand) 的高度相似性,促使我们推测PAR4和TFF2之间是否存在一种相互作用,或者 hTFF2是否能调节PAR4的生物学活性。所以该篇论文落脚于PAR4和hTFF2,着 重介绍PAR4和TFF2在胃肠道肿瘤中的表达变异以及TFF2对过表达PAR4的细胞 的趋化作用。 我们先用半定量PCR方法检测TFF2和PAR4在胃癌、肠癌及周围远癌部位组 织中mRNA的表达水平。结果提示两个基因在胃癌组织中的表达较周围远癌部位组织减弱,而在肠癌组织中的表达则较周围远癌部位组织增强。Western blotting 也得到相似的结果。为进一步明确PAR4和TFF2在胃癌和肠癌中表达的具体变化 情况,我们继而用实时荧光定量PCR对28例胃癌和38例肠癌及其周围远癌部位组 织中TFF2和PAR4的表达进行了研究。结果显示胃癌组织中两个基因mRNA的表 达都显著低于远癌部位组织(P<0.001),而肠癌组织中两个基因mRNA的表达 则显著高于远癌部位组织(P<0.001)。结合临床病理资料提示PAR4在淋巴结转 移的胃癌患者中的表达低于无淋巴结转移的患者(P<0.05),在胃窦癌中的表达 明显低于非胃窦癌(P<0.05);而发生淋巴结转移的肠癌患者其TFF2和PAR4基 因的表达都显著高于无淋巴结转移的肠癌患者(P<0.05);两个基因在中低分化 肠癌中的表达也显著高于高分化肠癌(P<0.001)。免疫组化结果也提示TFF2和 PAR4在胃癌中的表达显著低于周围远癌部位组织(P<0.001),而在肠癌中的表 达则显著高于周围远癌部位组织(P<0.001)。表明TFF2和PAR4在胃肠道肿瘤的 发生中可能受到某些因素的调节而协调性地一致性表达。 在细胞水平上,我们发现在同等浓度hTFF2的诱导下,过表达PAR4的Lovo 稳定株的细胞迁移能力较不表达者明显增强,并且hTFF2的促细胞迁移活性呈剂 量依赖性,同时伴随ERK1/2磷酸化的增强。同时,过表达PAR4的Lovo细胞增殖 能力强于无PAR4表达的细胞,但TFF2作用后其增强能力反而下降,表明TFF2 对过表达了PAR4的Lovo细胞具有抗增殖的能力。 总之这些结果提示PAR4和TFF2在胃肠道中协同表达的现实为两者之间产 生一定的作用提供了基础,而且这种共存为粘膜受损后的修复,组织自身平衡状 态的维持都发挥了一定的作用,同时也为临床相关疾病的诊断,治疗及预后提供 一个新的理论依据。当然,生理和病理情况下,存在于PAR4和TFF2之间的调控 和相互作用的分子机制仍不清楚,这也是进一步研究的关键所在。 为探讨其它动物体内三叶因子家族蛋白结构和功能的关系,我们进而利用原 核表达体系构建并表达纯化了Bm-TFF2以及它的两个单结构域。由于Bm-TFF2 分子中有三对二硫键,所以我们选用pET-32a表达体系表达融合的重组蛋白,并 利用融合蛋白N端引入的Xa因子酶切位点将融合蛋白中的硫氧还蛋白切除,亲和 柱及反向高压液相色谱纯化游离的重组蛋白。重组的Bm-TFF2全长具有血小板聚集活性,而第一个结构域只有诱导血小板变形的作用;三种重组蛋白都具有剂量 依赖性地诱导AGS细胞迁移的功能,但三种重组蛋白的细胞迁移活性无明显差 异。pET-32a表达体系成功表达Bm-TFF2的事实为我们研究人三叶因子家族蛋白 结构及功能关系提供一种方便而可靠的手段。
Resumo:
Human cyclin A(2) participates in cell cycle regulation, DNA replication, and transcription. Its overexpression has been implicated in the development and progression of a variety of human cancers. However, cyclin A(2) or its truncated form is very unstable in the absence of binding partner, which makes it difficult to get a deep insight of structural basis of the interactions. Therefore, biophysical studies of the full-length human cyclin A, would provide important information regarding protein stability and folding/unfolding process.
Resumo:
Cyclin A(2) plays critical role in DNA replication, transcription, and cell cycle regulation. Its overexpression has been detected and related to many types of cancers including leukemia, suggesting that suppression of cyclin A(2) would be an attractive strategy to prevent tumor progression. Herein, we apply functionalized single wall carbon nanotubes (f-SWNTs) to carry small interfering RNA (siRNA) into K562 cells and determine whether inhibition of cyclin A(2) would be a potential therapeutic target for chronic myelogenous leukemia.
Resumo:
The purpose of the present study was to develop implantable BCNU-toaded poly(ethylene glycol)poly(L-lactic acid) (PEG-PLLA) diblock copolymer fibers for the controlled release of 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU). BCNU was well incorporated and dispersed uniformly in biodegradable PEG-PLLA fibers by using electrospinning method. Environmental Scanning Electron Microscope (ESEM) images indicated that the BCNU-loaded PEG-PLLA fibers looked uniform and their surfaces were reasonably smooth. Their average diameters were below 1500 nm. The release rate of BCNU from the fiber mats increased with the increase of BCNU loading amount. In vitro cytotoxicity assay showed that the PEG-PLLA fibers themselves did not affect the growth of rat Glioma C6 cells. Antitumor activity of the BCNU-loaded fibers against the cells was kept over the whole experiment process, while that of pristine BCNU disappeared within 48 h. These results strongly suggest that the BCNU/PEG-PLLA fibers have an effect of controlled release of BCNU and are suitable for postoperative chemotherapy of cancers.
Resumo:
Rhein, an anthraquinone derivative of rhubarb, inhibits the proliferation of various human cancer cells. In this paper, we focused on studying the effects of rhein on human hepatocelluar carcinoma BEL-7402 cells and further understanding the underlying molecular mechanism in an effort to make the potential development of rhein in the treatment of cancers. Using MTT assay and flow cytometry, we demonstrate a critical role of rhein in the suppression of BEL-7402 cell proliferation in a concentration- and time-dependent manner. The increase of apoptosis rate was observed after incubation of BEL-7402 cells with rhein at 50-200 mu M for 48 hours, and the cells exhibit typical apoptotic features including cellular morphological change and chromatin condensation. Moreover, rhein-induced cell cycle S-phase arrest. Additionally, after rhein treatment, expression levels of c-Myc gene were decreased, while those of caspase-3 gene were increased in a dose-dependent manner by using real-time PCR assay. The results demonstrate for the first time that cell cycle S-phase arrest is one of the mechanisms of rhein in inhibition of BEL-7402 cells. Rhein plays its role by inducing cell cycle arrest via downregulation of oncogene c-Myc and apoptosis through the caspase-dependent pathway. It is expected that rhein will be effective and useful as a new agent in hepatocelluar carcinoma treatment in the future.