477 resultados para graphite paste electrode
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
Single-walled carbon nanohorn (SWCNH) paste electrode was used for amperometric determination of concentrated hydrogen peroxide, and was compared with other carbon electrodes. The calibration plots are linear from 0.5 to 100 mM at activated SWCNH paste electrode and edge plane graphite (EPG) electrode. In contrast, the calibration plots are linear only at concentrations lower than 45 mM at graphite paste electrode, multi-walled carbon nanotube paste electrode, and glassy carbon electrode.
Resumo:
A new detection scheme for the determination of adsorbable coreactants of Ru(bpy)(3)(2+) electrochemiluminescent reaction is presented. It is based on selective preconcentration of coreactant onto an electrode, followed by Ru(bpy)(3)(2+) electrochemiluminescent detection. The coreactant employed is chlorpromazine. It was sensitively detected after 5-min preconcentration onto a lauric acid-modified carbon paste electrode. The linear concentration range was found to occur from 1 x 10(-8) to 3 x 10(-6) mol L-1 with a detection limit of 3.1 x 10(-9) mol L-1. The total analysis time is less than 10 min. As a result of selective preconcentration and medium exchange, such remarkable selectivity is achieved that reproducible quantitation of chlorpromazine in urine is possible.
Resumo:
A novel nonenzymatic glucose sensor was developed based on the renewable Ni nanoparticle-loaded carbon nanofiber paste (NiCFP) electrode. The NiCF nanocomposite was prepared by combination of electrospinning technique with thermal treatment method. The scanning electron microscopy (SEM) and transmission electron microscopy (TEM) images showed that large amounts of spherical nanoparticles were well dispersed on the surface or embedded in the carbon nanofibers. And the nanoparticles were composed of Ni and NiO, as revealed by energy dispersive X-ray spectroscopy (EDX) and X-ray powder diffraction (XRD). In application to nonenzymatic glucose determination, the renewable NiCFP electrodes, which were constructed by simply mixing the electrospun nanocomposite with mineral oil, exhibited strong and fast amperometric response without being poisoned by chloride ions. Low detection limit of 1 mu M with wide linear range from 2 mu M to 2.5 mM (R = 0.9997) could be obtained.
Resumo:
The electrochemiluminescence (ECL) of tris(2,29-bipyridyl) ruthenium(II) [Ru(bpy)(3)(2+)] ion-exchanged in the sulfonic-functionalized MCM-41 silicas was developed with tripropylamine (TPrA) as a co-reactant in a carbon paste electrode (CPE) using a room temperature ionic liquid (IL) as a binder. The sulfonic-functionalized silicas MCM-41 were used for preparing an ECL sensor by the electrostatic interactions between Ru( bpy)(3)(2+) cations and sulfonic acid groups. We used the IL as a binder to construct the CPE (IL-CPE) to replace the traditional binder of the CPE (T-CPE)-silicone oil. The results indicated that the MCM-41-modified IL-CPE had more open structures to allow faster diffusion of Ru( bpy)(3)(2+) and that the ionic liquid also acted as a conducting bridge to connect TPrA with Ru( bpy)(3)(2+) sites immobilized in the electrode, resulting in a higher ECL intensity compared with the MCM-41-modified T-CPE. Herein, the detection limit for TPrA of the MCM-41-modified IL-CPE was 7.2 nM, which was two orders of magnitude lower than that observed at the T-CPE. When this new sensor was used in flow injection analysis (FIA), the MCM-41-modified IL-CPE ECL sensor also showed good reproducibility. Furthermore, the sensor could also be renewed easily by mechanical polishing whenever needed.
Resumo:
Carbon nanotubes paste (CNTP) electrode was prepared with multi-walled carbon nanotubes and methyl silicone oil. Polyoxometalates (POMs) were assembled on the electrode surface with different methods, and investigated by cyclic voltammetry and Raman spectroscopy. Experiments showed that POMs/CNTP electrode prepared by direct method had better performance. K6P2Mo18O62 center dot 14H(2)O (P2Mo18) assembled CNTP electrode (P2Mo18/CNTP) electrode possessed good reversibility and could catalyze the reduction of bromate and iodate in 0.1 M H2SO4 Solution. Further, the multilayer films of P2Mo18 assembled CNTP electrodes were fabricated by layer-by-layer technique, which showed higher electrocatalytic activities. All these POMs assembled CNTP electrodes prepared exhibited good stability.
Resumo:
The electrochemiluminescence (ECL) of dichlorotris (1,10-phenanthroline) ruthenium (11) [Ru(phen)(3)(2+)] with peroxydisulfate (S2O82-) was first described. The use of carbon paste electrodes, organic solvent modified electrodes, allowed obtaining ECL in purely aqueous solution. The ECL produced by the reaction of electrogenerated C Ru(phen)(3)(2+) with the strongly oxidizing intermediate SO4-., was observed only when the applied potential was negative enough to reduce Ru(phen)(3)(2+). In comparison with Ru(bpy)(3)(2+)/S2O82- ECL, the Ru(phen)(3)(2+)/O-8(2-)/S2O82- ECL was more stable in aqueous solution. It was not affected by the storage of the carbon paste electrodes, and it quenched only at quite high S2O82- concentrations. The ECL intensity was a function of S2O82- concentration, increasing linearly with the S2O82- concentration from 5 X 10(-6) to 2 X 10(-3) mol l(-1), and dropping off sharply at S2O82- concentration higher than 20 mmol l(-1). The proposed ECL method with Ru(phen)(3)(2+) was sensitive and selective for the determination of S2O82-. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
The electrochemiluminescence (ECL) of the Ru(bgy)(3)(2-)/S2O82- system in purely aqueous solution at a carbon paste electrode can be clearly seen with the naked eye for Ru(bpy)(3)(2+) concentrations higher than 1 mmol L-1. The log-log plot of the emmitted light intensity vs. Ru(bpy)(3)(2+) concentration is linear over the region 10(-3)-10(-7) mol L-1 with a correlation coefficient of 0.997. The ECL intensity increases linearly with the S2O82- concentration from 10(-6) mol L-1 up to 0.3 mmol L-1 and drops off sharply at concentrations higher than 1 mmol L-1. In addition, a weak ECL signal was obtained when the potential was biased more negative than -0.6 V even in the absence of S2O82-.
Resumo:
Cobalt(II) hexacyanoferrate (CoHCF) was deposited on graphite powder by an in situ chemical deposition procedure and then dispersed into methyltrimethoxysilane-derived gels to prepare a surface-renewable CoHCF-modified electrode. The electrochemical behavior of the modified electrode in different supporting electrolyte solutions was characterized by cyclic voltammetry. In addition, square-wave voltammetry was employed to investigate the pNa-dependent electrochemical behavior of the electrode. The CoHCF-modified electrode showed a high electrocatalytic activity toward thiosulfate oxidation and could thus be used as an amperometric thiosulfate sensor.
Resumo:
A new method for immobilization of a chemiluminescent reagent is presented. It is based on immobilizing hematin, a catalyst for luminol reaction, in the bulk of a carbon paste electrode. Bulk-immobilization allows renewal of the surface by simple polishing or cutting to expose anew and fully active surface in the case of fouling or deactivation by other means. By using a hematin-modified carbon paste electrode, the applied potential shifted negatively compared with that of unmodified carbon paste electrode or a glassy carbon electrode. The shift in potential changed the reaction processes and effectively stabilized the chemiluminescent signal during successive measurements. Under this condition, the signal was stable during 3 hours of continuous operation. The log-log plots of the emitted light intensity vs. luminol concentration and hydrogen peroxide concentration were linear over the region 10(-8)-10(-3) mol L-1 with a correlation coefficient of 0.999 and 3.9 x 10(-6)-10(-3) mol L-1 with a correlation coefficient of 0.994, respectively. Application of this method for other chemiluminescent and bioluminescent systems is suggested.
Resumo:
A flow injection analysis detection method for glucose is presented which is based on the oxidation of glucose by glucose oxidase followed by chemiluminescent detection of hydrogen peroxide. Both glucose oxidase and hematin, a chemiluminescent reaction catalyst, were bulk-immobilized conveniently by direct mixing with carbon paste, which allows renewal of the electrode surface by simply polishing or cutting to expose a new and fully active surface in the case of fouling. Luminol in reagent solution passed through the flow cell and reacted with hydrogen peroxide produced by the enzyme reactor in the presence of the catalyst to yield light. An applied potential of -0.4 V avoided the electrode fouling effectively. The log-log plot of the emitted light intensity vs glucose concentration was linear over the range of 1-100 mmol L-1 with a correlation coefficient of 0.992. Application of this method to other chemiluminescent and bioluminescent systems is suggested. (C) 1999 Academic Press.
Resumo:
An electrochemical DNA biosensor was fabricated by immobilizing DNA probe on aluminum ion films that were electrodeposited on the surface of the stearic acid-modified carbon paste electrode (CPE). DNA immobilization and hybridization were characterized with cyclic voltammetry (CV) by using methylene blue (MB) as indicator. MB has a couple of well-defined voltammetric redox peaks at the CPE. The currents of redox peaks of MB decreased after depositing aluminum ion films on the CPE (Al(III)/CPE) and increased dramatically after immobilizing DNA probe (ssDNA/Al(III)/CPE). Hybridization of DNA probe led to a marked decrease of the peak currents of MB, which can be used to detect the target single-stranded DNA. The conditions for the preparation of Al(III)/CPE, and DNA immobilization and hybridization were optimized. The specific sequences related to bar transgene in the transgenic corn and the PCR amplification of CP4 epsps gene from the sample of transgenic roundup ready soybean were detected by differential pulse voltammetry (DPV) with this new electrochemical DNA biosensor. The difference between the peak currents of MB at ssDNA/Al(III)/CPE and that at hybridization DNA modified electrode (dsDNA/Al(III)/CPE) was applied to determine the Specific sequence related to the target bar gene with the dynamic range comprised between 1.0 X 10(-7) mol/L to 1.0 x 10(-4) mol/L. A detection limit of 2.25 x.10(-8) mol/L. of oligonucleotides can be estimated.
Resumo:
A novel carbon-nanofiber-modified carbon-paste electrode (CNF-CPE) was employed for the simultaneous determination of dopamine (DA), ascorbic acid (AA) and uric acid (UA) with good selectivity and high sensitivity. The CNFs were prepared by combination of electrospinning technique with thermal treatment method and were used without any pretreatment. In application to determination of DA, AA and UA in the ternary mixture, the pristine CNF-CPE exhibited well-separated differential pulse voltammetric peaks with high catalytic current. Low detection limits of 0.04 mu M, 2 mu M and 0.2 mu M for DA, AA and UA were obtained, with the linear calibration curves over the concentration range 0.04-5.6 mu M, 2-64 mu M and 0.8-16.8 mu M, respectively.
Resumo:
In situ electrochemical scanning tunneling microscopy, alternating current voltammetry, and electrochemical quartz crystal microbalance have been employed to follow the potential-dependent adsorption/desorption processes of nucleic acid bases on highly oriented pyrolytic graphite (HOPG) electrode. The results show that (i) potential-dependent adsorption/desorption of nucleic acid bases on HOPG electrode was accompanied by delamination of the HOPG surface, and the delamination initiates from steps or kinks on the electrode surface, which provide highly active sites for adsorption; (ii) the delamination usually occurred when the electrode potential was changed or when the electrode was at potentials where the phase transition of adsorbate occurred. These results suggest that the surface stress resulting from the interaction between the substrate and adsorbate, as well as the interaction due to potential-induced surface charge distribution and the hysteresis of charge equilibrium are the main factors resulting in HOPG delamination. (C) 1999 The Electrochemical Society. S0013-4651(97)12-013-4. All rights reserved.
Resumo:
The novel nanoparticles, [Ru(bPY)(3)](2)SiW12O40 center dot 2H(2)O(2) were firstly synthesized and characterized by elemental analysis, IR, and TEM. The nanoparticles were used to fabricate a chemically modified carbon paste electrode (CPE) by dispersing nanoparticles and graphite powder in silicone grease. Thus-prepared CPE shows bifunctional electrocatalytic activities towards the reduction of nitrite and the oxidation of oxalate, and exhibits sensitive electrochemiluminescence (ECL).
Resumo:
Here we investigated the analytical performances of the bismuth-modified zeolite doped carbon paste electrode (BiF-ZDCPE) for trace Cd and Pb analysis. The characteristics of bismuth-modified electrodes were improved greatly via addition of synthetic zeolite into carbon paste. To obtain high reproducibility and sensitivity, optimum experimental conditions for bismuth deposition Were Studied.