107 resultados para geothermal gradient
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
Processing of a recently acquired seismic line in the northeastern South China Sea by Project 973 has been conducted to study the character and the distribution of gas hydrate Bottom-Simulating Reflectors (BSRs) in the Hengchun ridge. Analysis of different-type seismic profiles shows that the distribution of BSRs can be revealed to some extents by single-channel profile in this area, but seismic data processing plays an important role to resolve the full distribution of BSRs in this area. BSR' s in the northeastern South China Sea have the typical characteristics of BSRs on worldwide continental margins: they cross sediment bed reflections, they are generally parallel to the seafloor and the associated reflections have strong amplitude and a negative polarity. The characteristics of BSRs in this area are obvious and the BSRs indicate the occurrence of gas hydrate-bearing sediments in the northeastern South China Sea. The depth of the base of the gas-hydrate stability zone was calculated using the phase stability boundary curve of methane hydrate and gas hydrate with mixture gas composition and compared with the observed BSR depth. If a single gradient geothermal curve is used for the calculation, the base of the stability zone for methane hydrate or gas hydrate with a gas mixture composition does not correspond to the depth of the BSRs observed along the whole seismic profile. The geothermal gradient therefore changes significantly along the profile. The geothermal gradient and heat flow were estimated from the BSR data and the calculations show that the geothermal gradient and heat flow decrease from west to east, with the increase of the distance from the trench and the decrease of the distance to the island arc. The calculated 2 heat flow changes from 28 to 64 mW/m(2), which is basically consistent with the measured heat flow in southwestern offshore Taiwan.
Resumo:
Abstract In order to provide basic data for evaluation of the petroleum potential in the deep water area of the northern margin of the South China Sea (SCS), present-day thermal regime and basin tectonothermal evolution are reconstructed and the maturation history of the Cenozoic major source rocks in the study area is derived. The present-day geothermal regime in the deep water area of the northern margin of SCS is defined according to the geothermal gradient, thermal properties and heat flow data. Tectonic subsidence history is reconstructed based on borehole and seismic data, and accordingly the stretching episodes are determined from the subsidence pattern. Heat flow history in the deep water area of the northern margin of SCS is estimated on a finite time, laterally non-uniform and multi-episode stretching model. Maturation history of the main source rocks in the study area is estimated through EASYRo% kinetic model and thermal history, and the potential of petroleum in the deep water area of the northern margin of SCS is evaluated based on the data above. The results show that the present-day geothermal regime in the deep water area of the northern margin of SCS is characterized by “hot basin” with high geothermal gradient (39.1±7.4℃/km) and high heat flow (77.5±14.8 mW/m2), and that the Qiongdongnan Basin (QDNB) underwent three stretching episodes and consequently suffered three heating episodes (Eocene, Oligocene and Pliocene time) with highest paleo-heat flow of 65~90 mW/m2 at the end of the Pliocene, that the Pearl River Mouth Basin (PRMB) two stretching and two heating episodes (Eocene, Oligocene time) with highest paleo-heat flow of 60~70 mW/m2 at the end of the Oligocene, and that the source rocks matured drastically responding to the heating episodes. There are four hydrocarbon generation kitchens in the deep water area of the northern margin of SCS which are favor of its bright petroleum perspective. Tectonothermal analysis indicates that the present-day geothermal regime which is characterized with “hot basin” in the deep water area of the PRMB resulted mainly from the Cenozoic stretching as well as faulting and magmatic activities during the Neotectonic period, and that the Pliocene heating episode of the QDNB is coupled with the transition from sinistral to dextral gliding of the Red Rive fault, and that the deep water basins in the northern margin of SCS are typical of multiple rifting which caused multi-episode heating process.
Resumo:
The Study on rheology of the lithosphere and the environments of the seismogenic layer is currently the basic project of the international earthquake research. Yunnan is the ideal place for studying this project. Through the multi-disciplinary comprehensive study of petrology, geophysics, seismo-geology, rock mechanics, etc., the depth-strength profiles of the lithosphere have been firstly constructed, and the seismogenic layer and its geophysical and tectonic environments in Yunnan have been systematically expounded in this paper. The related results achieved are of the important significances for further understanding the mechanism of strong earthquake generation, dividing the potential foci and exposing recent geodynamical processes in Yunnan. Through the comprehensive contrast of the metamorphic rocks in early and middle Proterozoic outcropping on the surface, DSS data and experimental data of rock seismic velocity under high temperature and high pressure, the petrological structure of the crust and upper mantle has been studied on Yunnan: the upper, middle and lower crust is composed of the metamorphic rocks of greenschist, amphibolite and granulite facies, respectively or granitoids, diorites and gabbros, respectively, and the upper mantle composed of the peridotites. Through the contrast studies of the heat flow and epicenters of the strong earthquakes, the distribution of the geotemperature and the data of focal depth, the relationship of between seismicity and geothermal structure of the lithosphere in Yunnan has been studied: the strong earthquakes with magnitude M ≥ 6.0 mainly take place at the geothermal gradient zone, and the seismic foci densely distribute between 200~500 ℃ isogeotherms. On the basis of studies of the rock properties and constituents of the crust and upper mantle and geothermal structure of the lithosphere, the structure of the rheological stratification of the lithosphere has been studied, and the corresponding depth-strength profiles have been constructed in Yunnan. The lithosphere in majority region of Yunnan has the structure of the rheological stratification, i.e. the brittle regime in the upper crust or upper part of the upper crust, ductile regime in the middle crust or lower part of the upper crust to middle crust, ductile regime in the lower crust and ductile regime in the subcrustal lithosphere. The rheological stratification has the quite marked lateral variations in the various tectonic units. The distributions of the seismogenic layer have been determined by using the high accurate data of focal depth. Through the contrast of the petrological structure, the structure of seismic velocity, electric structure, geotemperature structure, and rheological structure and the study of the focal mechanism in the seismogenic layer, the geophysical environments of the seismogenic layer in Yunnan have been studied. The seismogenic layer in Yunnan is located at the depths of 3 ~ 20 km; the rocks in the seismogenic layer are composed of the metamorphic rocks of greenschist to amphibolite facies (or granites to diorites); the seismogenic layer and its internal focal regions of strong earthquakes have the structure of medium properties with the relatively high seismic velocity, high density and high resistivity; there exists the intracrustal low seismic velocity and high conductivity layer bellow the seismogenic layer, the geotemperature is generally 100~500 ℃ in the depth range in which the seismogenic layer is located. The horizontal stress field predominates in the seismogenic layer, the seismogenic layer corresponds to the brittle regime of the upper crust or brittle regime of the upper crust to semibrittle regime of the middle crust. The formation of the seismogenic layer, preparedness and occurrence of the strong earthquakes is the result of the comprehensive actions of the source fault, rock constituent, structure of the medium properties, distribution of the geotemperature, rheological structure of the seismogenic layer and its external environments. Through the study of the structure, active nature, slip rate, segmentation of the active faults, and seismogenic faults, the tectonic environments of the seismogenic layer in Yunnan have been studied. The source faults of the seismogenic layer in Yunnan are mainly A-type ones and embody mainly the strike slip faults with high dip angle. the source faults are the right-lateral strike slip ones with NW-NNW trend and left-lateral strike slip ones with NE-NEE trend in Southwestern Yunnan, the right-lateral strike slip ones with NNW trend and left-lateral strike slip ones with NNE trend (partially normal ones) in Northwestern Yunnan, the right-lateral strike slip ones with NWW trend in Central Yunnan and left-lateral strike slip ones with NW-NNW trend in Eastern Yunnan. Taking Lijiang earthquake with Ms = 7.0 for example. The generating environments of the strong earthquake and seismogenic mechanical mechanism have been studied: the source region of the strong earthquake has the media structure with the relatively high seismic velocity and high resistivity, there exists the intracrustal low velocity and high conductivity layer bellow it and the strong earthquakes occur near the transitional zone of the crustal brittle to ductile deformation. These characteristics are the generality of the generating environments of strong earthquakes. However, the specific seismogenic tectonic environments and action of the stress field of the seismic source in the various regions, correspondingly constrains the dislocation and rupture mechanical mechanism of source fault of strong earthquake.
Resumo:
Natural gas pays more important role in the society as clean fuel. Natural gas exploration has been enhanced in recent years in many countries. It also has prospective future in our country through "85" and "95" national research. Many big size gas fields have been discovered in different formations in different basins such as lower and upper Paleozoic in Erdos basin, Tertiary system in Kuche depression in Tarim basin, Triassic system in east of Sichuan basin. Because gas bearing basins had been experienced multiple tectogenesis. The characteristics of natural gases usually in one gas field are that they have multiple source rocks and are multiple maturities and formed in different ages. There has most difficult to research on the gas-rock correlation and mechanism of gas formation. Develop advanced techniques and methods and apply them to solve above problems is necessary. The research is focused on the critical techniques of geochemistry and physical simulation of gas-rock correlation and gas formation. The lists in the following are conclusions through research and lots of experiments. I 8 advanced techniques have been developed or improved about gas-rock correlation and gas migration, accumulation and formation. A series of geochemistry techniques has been developed about analyzing inclusion enclave. They are analyzing gas and liquid composition and biomarker and on-line individual carbon isotope composition in inclusion enclave. These techniques combing the inclusion homogeneous temperature can be applied to study on gas-rock correlation directly and gas migration, filling and formation ages. Technique of on-line determination individual gas carbon isotope composition in kerogen and bitumen thermal pyrolysis is developed. It is applied to determine the source of natural is kerogen thermal degradation or oil pyrolysis. Method of on-line determination individual gas carbon isotope composition in rock thermal simulation has being improved. Based on the "95"former research, on-line determination individual gas carbon isotope composition in different type of maceral and rocks thermal pyrolys is has been determined. The conclusion is that carbon isotope composition of benzene and toluene in homogenous texture kerogen thermal degradation is almost same at different maturity. By comparison, that in mixture type kerogen thermal pyrolysis jumps from step to step with the changes of maturity. This conclusion is a good proof of gas-rock dynamic correlation. 3. Biomarker of rock can be determined directly through research. It solves the problems such as long period preparing sample, light composition losing and sample contamination etc. It can be applied to research the character of source rock and mechanism of source rock expulsion and the path of hydrocarbon migration etc. 4. The process of hydrocarbon dynamic generation in source rock can be seen at every stage applying locating observation and thermal simulation of ESEM. The mechanism of hydrocarbon generation and expulsion in source rock is discussed according to the experiments. This technique is advanced in the world. 5. A sample injection system whose character is higher vacuum, lower leaks and lower blank has been built up to analyze inert gas. He,Ar,Kr and Xe can be determined continuously on one instrument and one injection. This is advanced in domestic. 7. Quality and quantity analysis of benzene ring compounds and phenolic compounds and determination of organic acid and aqueous gas analysis are applied to research the relationship between compounds in formation water and gas formation. This is another new idea to study the gas-rock correlation and gas formation. 8. Inclusion analysis data can be used to calculate the Paleo-fluid density, Paleo-geothermal gradient and Paleo-geopressure gradient and then to calculate the Paleo-fluid potential. It's also a new method to research the direction of hydrocarbon migration and accumulation. 9. Equipment of natural gas formation simulation is produced during the research to probe how the physical properties of rock affect the gas migration and accumulation and what efficiency of gas migrate and factors of gas formation and the models of different type of migration are. II study is focused on that if the source rocks of lower Paleozoic generated hydrocarbon and what the source rocks of weathered formation gas pool and the mechanism of gas formation are though many advanced techniques application. There are four conclusions. 1.The maturity of Majiagou formation source rocks is higher in south than that in north. There also have parts of the higher maturity in middle and east. Anomalous thermal pays important role in big size field formation in middle of basin. 2. The amount of gas generation in high-over maturity source rocks in lower Paleozoic is lager than that of most absorption of source rocks. Lower Paleozoic source rocks are effective source rocks. Universal bitumen exists in Ordovician source rocks to prove that Ordovician source rocks had generated hydrocarbon. Bitumen has some attribution to the middle gas pool formation. 3. Comprehensive gas-rock correlation says that natural gases of north, west, south of middle gas field of basin mainly come from lower Paleozoic source rocks. The attribution ratio of lower Paleozoic source rocks is 60%-70%. Natural gases of other areas mainly come from upper Paleozoic. The attribution ratio of upper Paleozoic source rocks is 70%. 4. Paleozoic gases migration phase of Erdos basin are also interesting. The relative abundance of gasoline aromatic is quite low especially toluene that of which is divided by that of methyl-cyclohexane is less than 0.2 in upper Paleozoic gas pool. The migration phase of upper Paleozoic gas may be aqueous phase. By comparison, the relative abundance of gasoline aromatic is higher in lower Paleozoic gas. The distribution character of gasoline gas is similar with that in source rock thermal simulation. The migration phase of it may be free phase. IH Comprehensive gas-rock correlation is also processed in Kuche depression Tarim basin. The mechanism of gas formation is probed and the gas formation model has been built up. Four conclusions list below. 1. Gases in Kuche depression come from Triassic-Jurassic coal-measure source rocks. They are high-over maturity. Comparatively, the highest maturity area is Kelasu, next is Dabei area, Yinan area. 2. Kerogen thermal degradation is main reason of the dry gas in Kuche depression. Small part of dry gas comes from oil pyrolysis. VI 3.The K12 natural gas lays out some of hydro-gas character. Oil dissolved in the gas. Hydro-gas is also a factor making the gas drier and carbon isotope composition heavier. 4. The mechanism and genesis of KL2 gas pool list as below. Overpressure has being existed in Triassic-Jurassic source rocks since Keche period. Natural gases were expulsed by episode style from overpressure source rocks. Hetero-face was main migration style of gas, oil and water at that time. The fluids transferred the pressure of source rocks when they migrated and then separated when they got in reservoir. After that, natural gas migrated up and accumulated and formed with the techno-genesis. Tectonic extrusion made the natural gas overpressure continuously. When the pressure was up to the critical pressure, the C6-C7 composition in natural gas changed. The results were that relative abundance of alkane and aromatic decreased while cycloalkane and isoparaffin increased. There was lots of natural gas filling during every tectonic. The main factors of overpressure of natural gas were tectonic extrusion and fluid transferring pressure of source rocks. Well preservation was also important in the KL2 gas pool formation. The reserves of gas can satisfy the need of pipeline where is from west to east. IV A good idea of natural gas migration and accumulation modeling whose apparent character is real core and formation condition is suggested to model the physical process of gas formation. Following is the modeling results. 1. Modeling results prove that the gas accumulation rule under cap layer and gas fraction on migration path. 2. Natural gas migration as free phase is difficult in dense rock. 3. Natural gases accumulated easily in good physical properties reservoirs where are under the plugging layer. Under the condition of that permeability of rock is more than 1 * 10~(-3)μm~(-1), the more better the physical properties and the more bigger pore of rock, the more easier the gas accumulation in there. On the contrary, natural gas canonly migrate further to accumulate in good physical properties of rock. 4. Natural gas migrate up is different from that down. Under the same situation, the amount of gas migration up is lager than that of gas migration down and the distance of migration up is 3 times as that of migration down. 5. After gas leaks from dense confining layer, the ability of its dynamic plug-back decreased apparently. Gas lost from these arils easily. These confining layer can confine again only after geology condition changes. 6. Water-wetted and capillary-blocking rocks can't block water but gases generally. The result is that water can migrate continuously through blocking rocks but the gases stay under the blocking rocks then form in there. The experiments have proved the formation model of deep basin gas.
Resumo:
Through generalizing the thermal field characteristics in gas hydrates distribution area in the world, the favorable thermal conditions for gas hydrates in the South China Sea are analyzed firstly. On the basis of above analysis, focused on the gas hydrates stability zone (GHSZ), the dissertation initiated the gas hydrates studies with geothermal methods in the South China Sea which will provide useful information for gas hydrates resource exploration and evaluation in the future. On the basis of study on hydrates phase equilibrium and the GHSZ affecting factors, the potential planar distribution of gas hydrates is determined by studying the temperature and pressure conditions in the sea bottom with different water depth, and the thickness of GHSZ is attained by solving the hydrates phase boundary curve equation and geothermal gradient curve equation. The result shows that, if the chemical composition of hydrocarbons contains methane only and the salt content of water is 3.5%, hydrates can form and keep stable at sea bottom at water depth not less than 550m, and the thickness of GHSZ is more than 200m in Xisha Through, Southeastern area of Dongsha Islands, Southwestern basin of Taiwan Island, northern area of Nansha Trough. The GHSZ is thicker with heat flow, geothermal gradient, and thermal conductivity decreasing, and with water depth increasing. Geothermal field simulating also attains the base of GHSZ in Xisha through, which is less than the depth of BSR. Although the present T-P conditions is not the most favorable for gas hydrates through 6Ma history, gas hydrates are still profitable in Xisha Through, Southeastern area of Dongsha Islands, Southwestern basin of Taiwan Island, Luzon Trough and northern area of Nansha Trough by systemic study on the sedimentary and structural characteristics, the conditions of T-P and natural gas source, considering geochemical and geophysical indications found in the South China Sea.
Resumo:
The studies of this paper is an important part of the "ninth five" science&technology-tackling project of CNPC -The oil and gas distribution regulation and the aims of explortion in jizhong depression. Basing on the former research results, with the materials of regional structural setting, major tectonic movements, bi-and tri-dimension seismic sections, oil well sections and reservoir sections, this paper involves studies of tectonic evolution, sedimentarv evolution, magma movement and reservoir prediction. The existence of huge stripping and gliding nappe is proved in the RaoYang Sag for the frist time. The properties, development, evolution and the relationship with reservoir of the stripping and gliding nappe are discussed in details in this paper. It is also talked about the affects of stripping and nappes to oil and gas exploration theoretically and practically in the paper. The marking attributes of the stripping and gliding nappe includes stripping and gliding plane, two deformation systems, stratigraphic repeat and hiatus close to the stripping and gliding plane, and the deformation attributes in the front and back of stripping and gliding nappe. The RaoYang stripping and gliding nappes can be divided into different belts in north-south direction and different zones in east-west direction. RaoYang Stripping and gliging nappes took place in the late Paleogene period and before the sedimentation of Neogene period. The sliding direction is NWW. The sliding distance is about 6km. The geothermal gradient in the separating slump area is low and stable. The formation of the stripping and gliding nappes is due to the regional structural setting, the sediments of Paleogene system, the soft roof and the uneven rising movement of structure units. The evolution of the stripping and gliding nappes can be divided into the following stages: regional differential elevation and subsidence, unstable gravity and gravitational sliding, the frist wholly stripping faults and sliding stage, and the following second and third stripping faults and sliding stages. The identification of RaoNan stripping and gliding nappes has an important role on the research of regional structure and oil and gas exploration. Basing on the properties of stripping and gliding nappes, we can identtify the gliding fractures, ductile compressional folds, the front and back structures of gliding nappes and gliding plane covered structures. Combination with different reservoir forming conditions, these structures can lead to different categories of reservoirs.
Resumo:
East China Sea Shelf Basin (ECSSB), as a basin with prospect of oil & gas resource and due to its special geological location on the west margin of the west Pacific, attracts a lot of attention from many geologists in the world.Based on systematic temperature measurements, bottom hole temperature (BHT) and the oil temperature data, the geothermal gradients in the ECS SB are calculated and vary from 25 to 43°C/km, with a mean of 32.7°C/km. The geothermal gradient in Fuzhou Sag has the higher value(40.6°C/km) in Taibei Depression than that in others. The lower value (27.2 °C/km) occurs in in Xihu Depression. The middle values occurs in Jiaojiang and Lishui sags in Taibei Depression with a mean value of 34.8 °C/km. Incorporated with the measured thermal conductivity, heat flow values show that the ECSSB is characterized by present-day heat flow around 70.6mW/m2, varying between 55 and 88 mW/m2. No significant difference in heat flow is observed between the Xihu and the Taibei Depressions. These heat flow data suggest that the ECSSB is geothermally not a modem back-arc basin.Applying the paleogeothermal gradient based method, thermal history is reconstructed using vitrinite reflectance (VR) and apatite fission track (AFT) data. The results suggest that the thermal history was different in the Taibei and the Xihu depressions. Paleo-heat flow values when the pre-Tertiary formations experienced their maximum temperature at the end of the Paleocene reached a mean of 81 mW/m2 in the Taibei Depression, much higher than the present-day value. The lower Tertiary sediments in the Xihu Depression experienced maximum temperatures at the end of Oligocene and reached a mean paleo-heat flow value of 83.4 mW/m2. The time, when the paleo-heat flow reached the maximum value, suggests that the ECSSB rifted eastward.Tectonic subsidence analysis shows that the timing of the major rifting episode was different across the ECSSB. The rifting occurred from the Late Cretaceous to the early Eocene in the Taibei Depression, followed by thermal subsidence from the late Eocene to the end of Miocene. In contrast, in the Xihu Depression the initial subsidence lasted until the early Miocene and thermal subsidence to the end of Miocene. From Pliocene to the present, an accelerated subsidence took place all along the West Pacific margin of the east Asia.The thermal lithosphere thickness is determined by temperature profile in the lithosphere, the mantle adiabat or the dry basalt solidus. It indicates that the thermal lithosphere reached the thinnest thickness at the end of Eocene in the Taibei Depression and the end of Oligocene in the Xihu Depression, respectively, corresponding with a value of 57-66km and 56-64km. In Taibei Depression, the lithosphere thickness decreased 16-22km from the end of Mesozoic to Paleocene. After Paleocene, the thickness increased 13-16km and reached 71-79 km at present-day. In Xihu Depression, From the end of Oligocene to present-day, the thickness increased 10-13km and reached 69-76km at present-day. The evolution of the lithosphere thickness is associated closely with the lithosphere stretching.Combining the reconstructed thermal history and the burial history, the maturation of the Jurassic oil-source rock shows that the main hydrocarbon generation phase was in the mid-Jurassic and a secondary hydrocarbon generation occurred at the end of Paleocene. The secondary generation was controlled mainly by the tectono-thermal background during the Paleocene.
Resumo:
在应用激光技术加工复杂曲面时,通常以采样点集为插值点来建立曲面函数,然后实现曲面上任意坐标点的精确定位。人工神经网络的BP算法能实现函数插值,但计算精度偏低,往往达不到插值精确要求,造成较大的加工误差。提出人工神经网络的共轭梯度最优化插值新算法,并通过实例仿真,证明了这种曲面精确定位方法的可行性,从而为激光加工的三维精确定位提供了一种良好解决方案。这种方法已经应用在实际中。
Resumo:
A new phenomenological strain gradient theory for crystalline solid is proposed. It fits within the framework of general couple stress theory and involves a single material length scale Ics. In the present theory three rotational degrees of freedom omega (i) are introduced, which denote part of the material angular displacement theta (i) and are induced accompanying the plastic deformation. omega (i) has no direct dependence upon u(i) while theta = (1 /2) curl u. The strain energy density omega is assumed to consist of two parts: one is a function of the strain tensor epsilon (ij) and the curvature tensor chi (ij), where chi (ij) = omega (i,j); the other is a function of the relative rotation tensor alpha (ij). alpha (ij) = e(ijk) (omega (k) - theta (k)) plays the role of elastic rotation reason The anti-symmetric part of Cauchy stress tau (ij) is only the function of alpha (ij) and alpha (ij) has no effect on the symmetric part of Cauchy stress sigma (ij) and the couple stress m(ij). A minimum potential principle is developed for the strain gradient deformation theory. In the limit of vanishing l(cs), it reduces to the conventional counterparts: J(2) deformation theory. Equilibrium equations, constitutive relations and boundary conditions are given in detail. For simplicity, the elastic relation between the anti-symmetric part of Cauchy stress tau (ij), and alpha (ij) is established and only one elastic constant exists between the two tensors. Combining the same hardening law as that used in previously by other groups, the present theory is used to investigate two typical examples, i.e., thin metallic wire torsion and ultra-thin metallic beam bend, the analytical results agree well with the experiment results. While considering the, stretching gradient, a new hardening law is presented and used to analyze the two typical problems. The flow theory version of the present theory is also given.
Resumo:
Overland flow on a hillslope is significantly influenced by its microtopography, slope length and gradient, and vegetative cover. A 1D kinematic wave model in conjunction with a revised form of the Green-Ampt infiltration equation was employed to evaluate the effect of these surface conditions. The effect of these conditions was treated through the resistance parameter in the kinematic wave model. The resistance in this paper was considered to be made up of grain resistance, form resistance, and wave resistance. It was found that irregular slopes with microtopography eroded more easily than did regular slopes. The effect of the slope gradient on flow velocity and flow shear stress could be negative or positive. With increasing slope gradient, the flow velocity and shear stress first increased to a peak value, then decreased again, suggesting that there exists a critical slope gradient for flow velocity and shear stress. The vegetative cover was found to protect soil from erosion primarily by enhancing erosion-resisting capacity rather than by decreasing the eroding capability of overland flow.
Resumo:
The flow theory of mechanism-based strain gradient (MSG) plasticity is established in this paper following the same multiscale, hierarchical framework for the deformation theory of MSG plasticity in order to connect with the Taylor model in dislocation mechanics. We have used the flow theory of MSG plasticity to study micro-indentation hardness experiments. The difference between deformation and flow theories is vanishingly small, and both agree well with experimental hardness data. We have also used the flow theory of MSG plasticity to investigate stress fields around a stationary mode-I crack tip as well as around a steady state, quasi-statically growing crack tip. At a distance to crack tip much larger than dislocation spacings such that continuum plasticity still applies, the stress level around a stationary crack tip in MSG plasticity is significantly higher than that in classical plasticity. The same conclusion is also established for a steady state, quasi-statically growing crack tip, though only the flow theory can be used because of unloading during crack propagation. This significant stress increase due to strain gradient effect provides a means to explain the experimentally observed cleavage fracture in ductile materials [J. Mater. Res. 9 (1994) 1734, Scripta Metall. Mater. 31 (1994) 1037; Interface Sci. 3(1996) 169].
Resumo:
The gradient elastic constitutive equation incorporating the second gradient of the strains is used to determine the monochromatic elastic plane wave propagation in a gradient infinite medium and thin rod. The equation of motion, together with the internal material length, has been derived. Various dispersion relations have been determined. We present explicit expressions for the relationship between various wave speeds, wavenumber and internal material length.
Resumo:
A new hardening law of the strain gradient theory is proposed in this paper, which retains the essential structure of the incremental version of conventional J(2) deformation theory and obeys thermodynamic restrictions. The key feature of the new proposal is that the term of strain gradient plasticity is represented as an internal variable to increase the tangent modulus. This feature which is in contrast to several proposed theories, allows the problem of incremental equilibrium equations to be stated without higher-order stress, higher-order strain rates or extra boundary conditions. The general idea is presented and compared with the theory given by Fleck and Hutchinson (Adv. in Appl. Mech. (1997) 295). The new hardening law is demonstrated by two experimental tests i.e. thin wire torsion and ultra-thin beam bending tests. The present theoretical results agree well with the experiment results.
Resumo:
The close form solutions of deflections and curvatures for a film–substrate composite structure with the presence of gradient stress are derived. With the definition of more precise kinematic assumption, the effect of axial loading due to residual gradient stress is incorporated in the governing equation. The curvature of film–substrate with the presence of gradient stress is shown to be nonuniform when the axial loading is nonzero. When the axial loading is zero, the curvature expressions of some structures derived in this paper recover the previous ones which assume the uniform curvature. Because residual gradient stress results in both moment and axial loading inside the film–substrate composite structure, measuring both the deflection and curvature is proposed as a safe way to uniquely determine the residual stress state inside a film–substrate composite structure with the presence of gradient stress.
Resumo:
Residual stress and its gradient through the thickness are among the most important properties of as-deposited films. Recently, a new mechanism based on a revised Thomas-Fermi-Dirac (TFD) model was proposed for the origin of intrinsic stress in solid film