243 resultados para frost tolerance genes

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

40.00% 40.00%

Publicador:

Resumo:

In adaptation to new environments, organisms may accumulate mutations within encoding sequences to modify protein characteristics or acquire mutations within regulatory sequences to alter gene expression levels. With the development of antifreeze capability as the example, this study presents the evidence that change in gene expression level is probably the most important mechanism for adaptive evolution in a green alga Chlorella vulgaris. C. vulgaris NJ-7, an isolate from Antarctica, possesses an 18S rRNA sequence identical to that of a temperate isolate, SAG211-11b/UTEX259, but shows much higher freeze tolerance than the later isolate. The chromosomal DNA/cDNA of four antifreeze genes, namely hiC6, hiC12, rpl10a and hsp70, from the two isolates of C. vulgaris were cloned and sequenced, and very few variations of deduced amino acid sequences were found. In contrast, the transcription of hiC6, hiC12 and rpl10a was greatly intensified in NJ-7 compared to that in UTEX259, which is correlated to the significantly enhanced freeze tolerance of the Antarctica isolate. (C) 2009 National Natural Science Foundation of China and Chinese Academy of Sciences. Published by Elsevier Limited and Science in China Press. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Organisms living in water are inevitably exposed to periods of hypoxia. Environmental hypoxia has been an important stressor having manifold effects on aquatic life. Many fish species have evolved behavioral, physiological, biochemical and molecular adaptations that enable them to cope with hypoxia. However, the molecular mechanisms of hypoxia tolerance in fish, remain unknown. in this study, we used suppression subtractive hybridization to examine the differential gene expression in CAB cells (Carassius auratus blastulae embryonic cells) exposed to hypoxia for 24 h. We isolated 2100 clones and identified 211 differentially expressed genes (e-value <= 5e-3; Identity > 45%). Among the genes whose expression is modified in cells, a vast majority involved in metabolism, signal transduction, cell defense, angiogenesis, cell growth and proliferation. Twelve genes encoding for ERO1-L, p53, CPO, HO-1, MKP2, PFK-2, cystatin B, GLUT1, BTG1, TGF beta 1, PGAM1, hypothetical protein F1508, were selected and identified to be hypoxia-induced using semi-quantitive RT-PCR and real-time PCR. Among the identified genes, two open reading frames (ORFs) encoding for CaBTG1 and Cacystatin B were obtained. The deduced amino acid sequence of CaBTG1 had 94.1%, 72.8%, 72.8%, 72.8%, 68.6% identity with that of DrBTG1, HsBTG1, BtBTG1, MmBTG1 and XIBTG1. Comparison of Cacystatin B with known cystatin B, the molecules exhibited 49.5 to 76.0% identity overall. These results may provide significant information for further understanding of the adaptive mechanism by which C. auratus responds to hypoxia. (c) 2008 Elsevier Inc. All rights reserved.