10 resultados para foundations of mathematics
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
Abstract: To study the effects of spudcan penetration on the adjacent foundations of offshore platforms, experiments and numerical simulations (using business software ABAQUS) are carried out. It is shown that the penetration of spudcan can cause the soil layer affected in an annular zone. The affected zone has a maximum width of one times the diameter of the spudcan. The deflection of the platform’s foundation increases with the penetration of spudcan. The smaller the density of soil layer is, the bigger the displacement of the foundation is. However, the maximum displacement at the top of the foun- dation changes little once the penetration depth is over a critical value. The bigger the diameter and the penetration depth of the spudcan are, the bigger the displacements of the foundation are.
Resumo:
The magnetic flux tube concentrating strong magnetic field is the basic configuration of magneticfield in the solar atmosphere. In the present paper, the equilibrium of isolated magnetic flux tube inthe solar atmosphere is discussed. In the viewpoint of mathematics, the boundary condition is nonlinearand the position of boundary needs to be determined by the physical condition although the equation ofmagnetic potential is linear for the linear force-free field. Analytical solutions to the arches of bothuniform circular cross-section and non-uniform cross section have been obtained. The results show thatthe nonlinear problem may have or not have any solution according to different azimuthal components of the magnetic field; the number of solutions to the nonlinear problem is four at most, and two in some cases. In the present paper, the analytical solutions to the approximations of both fat and slender arches are given in detail, and the general features of magnetic arch structure are shown.
Resumo:
Large parts of shallow seas are covered by regular seabed patterns and sand wave is one kind of these patterns. The instability of the sedimentary structures may hazard pipelines and the foundations of offshore structures. In the last decade or so, it's a focus for engineers to investigate the movement mechanism of sand waves. Previous theoretical studies of the subject have developed a general model to predict the growth and migration of sand waves, which is based on the two-dimensional vertical shallow water equations and the bed-form deformation equations. Although the relation between wave-current flow and sand bed deformation has been established, the topographic influence has not been considered in the model. In this paper some special patterns, which are asymmetric and close to the reality, are represent as the perturbed seabed and the evolution of sand waves is calculated. The combination of a steady flow induced by wind and a sinusoidal tidal flow is considered as the basic flow. Finally the relations of some parameters (grain size, etc.) and sand waves' growth and migration are discussed, and the growth rate and migration speeds of asymmetric sand waves are carried out.
Resumo:
We address the influence of the orbital symmetry and the molecular alignment with respect to the laser-field polarization on laser-induced nonsequential double ionization of diatomic molecules, in the length and velocity gauges. We work within the strong-field approximation and assume that the second electron is dislodged by electron-impact ionization, and also consider the classical limit of this model. We show that the electron-momentum distributions exhibit interference maxima and minima due to electron emission at spatially separated centers. The interference patterns survive integration over the transverse momenta for a small range of alignment angles, and are sharpest for parallel-aligned molecules. Due to the contributions of the transverse-momentum components, these patterns become less defined as the alignment angle increases, until they disappear for perpendicular alignment. This behavior influences the shapes and the peaks of the electron-momentum distributions.
Resumo:
Bats (Chiroptera) are the second-most abundant mammalian order in the world, occupying a diverse range of habitats and exhibiting many different life history traits. In order to contribute to this highly underrepresented group we describe the sleep architecture of two species of frugivorous bat, the greater short-nosed fruit bat (Cynopterus sphinx) and the lesser dawn fruit bat (Eonycteris spelaea). Electroencephalogram (EEG) and electromyogram (EMG) data were recorded from multiple individuals (>= 5) by telemetry over a 72-h period in a laboratory setting with light/dark cycles equivalent to those found in the wild. Our results show that over a 24-h period both species spent more time asleep than awake (mean 15 h), less than previous reported for Chiroptera (20 h). C sphinx spent significantly more of its non-rapid eye movement sleep (NREM) and rapid eye movement sleep (REM) quotas during the light phase, while E. spelaea divided its sleep-wake architecture equally between both light and dark phases. Comparing the sleep patterns of the two species found that C. sphinx had significantly fewer NREM and REM episodes than E. spelaea but each episode lasted for a significantly longer period of time. Potential hypotheses to explain the differences in the sleep architecture of C. sphinx with E. spelaea, including risk of predation and social interaction are discussed. (C) 2010 Published by Elsevier B.V.
Resumo:
This paper studies the size dependence of biexciton binding energy in single quantum dots (QDs) by using atomic force microscopy and micro-photoluminescence measurements. It finds that the biexciton binding energies in the QDs show "binding" and "antibinding" properties which correspond to the large and small sizes of QDs, respectively. The experimental results can be well interpreted by the biexciton potential curve, calculated from the exciton molecular model and the Heitler-London method.
Resumo:
A critical Biot number, which determines both the sensitivity of spherical ceramics to quenching and the durations of the temperature-wave propagation and the thermal stresses in the ceramics subjected to thermal shock, is theoretically obtained. The results prove that once the Biot number of a ceramic sphere is greater than the critical number, its thermal shock failure will be such a rapid process that the failure only occurs in the initial regime of heat conduction, whereas the thermal shock failure of the ceramic sphere is uncertain in the course of heat conduction. The presented results provide a guide to the selection of the ceramics applied in the thermostructural engineering with thermal shock.
Resumo:
A universal Biot number, which not only describes the susceptibility of ceramic cylinders to quenching but also determines the duration that ceramic cylinders are subjected to thermal stress during thermal shock, is theoretically obtained. The analysis proves that thermal shock failure of ceramic cylinders with a Biot number greater than the critical value is a rapid process, which only occurs in the initial heat conduction regime. The results provide a guide to the selection of ceramic materials for thermostructural engineering, with particular reference to thermal shock.