19 resultados para flag
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
小麦旗叶的光合产物是其籽粒碳水化合物的主要来源,因此如何提高旗叶的光合能力从而提高小麦产量一直是小麦研究的热点。但是以往对高产小麦旗叶的研究主要集中在光合功能和生理生化指标等方面,很少涉及其结构与功能的联系,以及对亲本与子代的旗叶进行对比观察。本文以冬小麦亲本小偃54 、8602及其子代小偃81(高产品种)灌浆期的旗叶为材料,应用细胞离析法、组织切片和荧光显微技术等,对旗叶中叶肉细胞形态、叶绿体数目、叶片厚度、维管束数目和面积等进行了比较观察和测定,旨在探讨小麦旗叶结构与其光合效率的关系。研究结果表明,与亲本小偃54、8602相比,子代小偃81的叶片较厚,横切面内中央大维管束的周长与面积较大;高环数叶肉细胞所占比例、叶肉细胞的周长及其平面面积和细胞内叶绿体的数目等均大于亲本。由此可见,通过小麦品种的改良确实能使其旗叶的结构与光合细胞发生了明显的变化,从而为植物细胞结构和功能的密切关系提供了有力的证据;同时也为作物改良育种提供了又一种新的育种目标。 小麦非叶器官之一的芒,对其结构与光合特性关系的研究尚不够深入和广泛。本实验以具芒小麦高产耐旱品种京411籽粒不同发育时期的芒及旗叶为材料,对其叶绿体结构、放氧速率和磷酸烯醇式丙酮酸羧化酶(PEPCase EC 4.1.1.31)的活性进行了比较观察和测定。超微结构显示,从抽穗期开始,芒和旗叶中的叶绿体基粒及其垛叠度均有增加,之后由灌浆末期开始,叶绿体的膜系统开始逐渐解体。通过放氧速率的测定表明,在芒和旗叶中,光合速率在前几个时期呈上升趋势,随着器官的衰老逐渐下降,但是,旗叶放氧速率的下降比芒中更早。另外,芒的PEPCase活性在籽粒发育的整个过程中均高于旗叶,其中以籽粒干物质形成末期尤为显著。因此,芒对高产小麦籽粒的形成,特别是在干物质形成的后期起着更为重要的作用。
Resumo:
小麦是我国的重要粮食作物,小麦籽粒产量的形成主要来自小麦旗叶的光合同化产物,但是,小麦籽粒的灌浆时期正好伴随着旗叶的衰老过程,因此,研究小麦旗叶在衰老期间的光合作用有着重要意义。同时,光合器官也是产生活性氧的重要部位,如何消除衰老叶片中的活性氧,保证衰老旗叶光合作用的进行也有着重要意义。本文对衰老旗叶在衰老过程中的光合作用和抗氧化代谢进行了较为全面的研究。结果如下: 1.在大田小麦衰老旗叶中叶绿素含量,光合速率和RuBPCase活性随着衰老的进程而逐渐降低。但是在衰老过程中光系统II最大光化学效率(Fv/Fm),实际光系统II量子效率,光化学焠灭以及开放的光系统II激发能的利用效率在衰老初期和中期几乎不变,而到衰老晚期急剧下降。非光化学焠灭在衰老初期和中期也是几乎没有明显变化,到衰老晚期迅速上升。光系统II捕光色素复合体在衰老叶片中的下降要慢于光系统II核心和光系统I的下降。这些结果说明衰老叶片中,光系统II在叶绿素含量和光合速率和RuBPCase活性降低的情况下依然保持着完整的功能,而实际光系统II量子效率的下降是由于光系统II反应中心的关闭和光能热耗散的提高引起的。 2.叶黄素循环库随着衰老进程逐渐增加,叶黄素循环的脱环氧化状态也是逐渐增加。由于叶黄素循环在光能热耗散中有着重要贡献,这表明在衰老叶片中光能热耗散的提高与叶黄素循环在衰老叶片中的提高有关。 3.在衰老过程中,小麦旗叶的MDA,抗坏血酸含量以及其与脱氢抗坏血酸比值逐渐增加,谷胱甘肽含量逐渐降低,这说明在衰老叶片中,主要是抗坏血酸作为活性氧清除剂。 4. 分别以不同单位表示抗氧化代谢中各种酶的活性,这些酶包括:脱氢抗坏血酸还原酶,单脱氢抗坏血酸还原酶,抗坏血酸过氧化酶,谷胱甘肽还原酶,过氧化氢酶和超氧化物岐化酶。结果表明:以每克鲜重为单位表示的酶活随着衰老逐渐降低,而以每毫克蛋白表示的酶活都随着衰老逐渐升高,表现趋势为衰老初期小幅度变化,衰老晚期大幅度变化。同时,测定结果表明小麦旗叶衰老过程中的蛋白含量降低。这些说明在衰老过程中抗氧化酶的降解速度可能慢于其他蛋白的降解速度,相对提高了消除活性氧的能力。 5.对大田小麦开花期,衰老中期,衰老晚期的旗叶光合作用日变化作了较为系统的研究。结果表明,在小麦旗叶衰老的三个时期,叶绿素含量和Chl a/b比值以及叶黄素循环库在一天中变化不明显。光合速率随着光强增大而提高,在中午表现出明显的光抑制。光系统II最大光化学效率,实际光系统II量子效率,光化学焠灭和开放的光系统II激发能的利用效率在中午强光下较明显的降低,非光化学焠灭在中午强光下升高。它们的变化幅度都是在开花期和衰老中期较小或者几乎没有变化,而在衰老晚期旗叶中变化幅度明显增大。叶黄素脱环氧化状态随一天中光强的增大而增大,且在衰老晚期叶片中变化幅度最大。这说明在强光条件下,衰老叶片中光系统II仍然维持着完整的功能,这种功能的维持可能与高光强下光系统II的关闭和叶黄素循环参与的光能热耗散的增加有关。 6.对开花期,衰老中期,衰老晚期的旗叶抗氧化物日变化的研究发现:抗坏血酸含量和ASC/DASC都是在衰老晚期中午强光条件下有较明显的升高,在早晨和傍晚弱光条件下其值较低。脱氢抗坏血酸含量和ASC+DASC含量在一天中未表现出明显的变化规律。GSH+GSSG,GSH和GSH/GSSG有相似的变化规律,即在衰老的三个时期都表现出在一天的中午强光下的值比早晨和傍晚弱光条件下要高。GSSG在一天几乎不变。对开花期,衰老中期,衰老晚期旗叶的抗氧化酶日变化的研究发现:在开花期和衰老中期,DHAR活性一天中变化不大;在衰老晚期,其活性在中午强光条件下显著上升,而早晨和下午光强较弱的条件下,活性相对较低。ASPX, MDHAR, CAT和GR活性变化与DHAR类似。SOD活性在一天中变化不明显。结果表明,强光促进了抗氧化代谢中抗坏血酸的再生,特别在严重衰老叶片中与抗坏血酸再生有关的酶都在中午强光下有显著提高。严重衰老叶片中其他抗氧化酶在强光下,也表现出显著的提高,在衰老叶片中抗氧化系统提高了消除活性氧的能力,特别是在强光下,抗氧化系统有着重要的作用。
Resumo:
小麦杂交坏死是某些小麦杂交种表现出的叶片提前逐渐死亡的现象。它是由两个坏死基因Ne1和Ne2在杂交种中相遇后发生显性互补引起的。坏死从叶片尖端逐渐过渡到叶片基部,从成熟叶片发展到幼嫩叶片。一些严重坏死的F1完成它的生活周期前就在不同的生长阶段死去,无法获得F1种子,这就限制了携带优良性状的亲本的选择和优良基因的交流。另外,小麦杂交坏死是一个独特的研究植物程序性死亡的遗传系统。虽然小麦杂交坏死这种现象已经发现很多年,但其详细的分子机理却仍然未知。对小麦杂交坏死的分子机理进行深入研究将有助于克服小麦杂交利用中杂交坏死的遗传障碍,此外,也为深入研究植物的PCD机理提供可操作靶分子。 本论文采用高通量蛋白质组研究技术对小麦杂交坏死进行了研究。携带坏死基因Ne2的小麦品种Pan555(P)和携带坏死基因Ne2的小麦品种Zheng891(Z)生长发育完全正常,将两个亲本杂交,所得杂交F1代PZF1表现杂交坏死。在小麦生长阶段8,旗叶(Flag leaf)刚刚出现,PZF1的旗叶下第一片叶子(FL-1)还是完全绿色,FL-2叶尖开始有坏死斑出现。在这个阶段,分别将PZF1,P,Z的FL-2叶剪成相等的尖,中,基三段。我们选择的PZF1的FL-2叶,其叶尖段已经有成片的坏死斑出现;中间段零星出现少量坏死斑点;基部段和亲本一样还是完全的绿色,代表坏死进程中的不同阶段。又选PZF1的FL-1和FL-2分别代表杂交坏死启动前和杂交坏死启动后。两个亲本P和Z的FL-2叶的三段及FL-1叶正常,都是完全绿色。 首先分别分析了PZF1,P和Z的FL-2叶的尖、中、基三段的蛋白表达情况。在PZF1的尖、中、基三段共检测到23个差异表达蛋白点。这23个点在两个亲本的尖、中、基三段中的表达丰度没有显著差异(p<0.05),说明这23个蛋白的差异表达不是由于叶段的不同引起,确与杂交坏死相关。对这23个蛋白进行了MALDI-TOF质谱鉴定,其中18个得到成功鉴定。然后对PZF1,P和Z的FL-1叶和FL-2叶的蛋白表达情况进行了分析。与PZF1的FL-1叶比较,在FL-2叶中检测到19个蛋白上调,20个蛋白下调。这39个蛋白的丰度在两个亲本的FL-1和FL-2叶之间没有显著差异,说明这39个蛋白的差异表达不是由于叶位的不同引起,确与杂交坏死相关。对这39个蛋白进行质谱鉴定其中26个得到成功鉴定。 根据被鉴定蛋白的功能及其表达丰度的变化,对这些蛋白在小麦杂交坏死中可能的作用进行了讨论。与PZF1的FL-2叶基部相比,S-腺苷同型半胱氨酸水解酶(S-adenosyl homocysteine hydrolase)在中部极显著(p<0.01)下调,而在中部和尖段之间没有显著差异,保持低丰度不变。腺苷甲硫氨酸3(AdoMet synthase 3)和甲硫氨酸合成酶1(Methionine synthase 1)都在PZF1的FL-2叶尖段上调。甲基化循环中的这3个酶比例的不协调可能会以不同的方式加速细胞老化。 与PZF1的FL-1叶比较,尿卟啉环脱羧酶(Uroporphyrinogen decarboxylase)在FL-2叶中下调,这将引起尿卟啉环III的积累。脂加氧酶(Lipoxygenases)在FL-2叶中上调。尿卟啉环III的积累和脂加氧酶的上调都会引起细胞内活性氧的增加。另外活性氧和脂加氧酶都会使脂发生过氧化作用,进而导致细胞膜完整性受到破坏,最终可能导致细胞死亡。 与基部段比较,在PZF1的FL-2叶的尖段和/或中间段;以及与PZF1的FL-1叶比较,在FL-2叶中,都有很多防御性蛋白的上调,这暗示应对活性氧、脂过氧化、甲基化循环中三个酶比例的不协调等引起的对细胞的破坏作用,细胞可能启动了抗细胞死亡系统来应对这种细胞内部的胁迫。 然而,与基部段比较,一些能量相关蛋白在PZF1的FL-2叶的尖段和/或中间段;以及与PZF1的FL-1叶比较,在FL-2叶中的异常表达可能会以干扰能量循环的方式加速细胞死亡。另外,与FL-2基部段比较,在尖段和/或中间段,以及与PZF1的FL-1比较,在FL-2中,都有一些防御性蛋白、蛋白合成相关的蛋白以及单链DNA结合蛋白下调,它们的变化可能会降低细胞的抵抗力,蛋白合成能力以及DNA修复能力。细胞正常代谢的很多方面都受到干扰从而使PZF1叶细胞最终走向死亡。 本研究中发现了三个甲基化循环中的酶变化,而且S-腺苷同型半胱氨酸水解酶是在坏死进程的较早阶段发生下调,它的变化可能是小麦杂交坏死的一个诱因,这暗示小麦杂交坏死可能是一个表观遗传学事件。另外本研究还发现一些和活性氧,脂氧化等相关的蛋白的变化,而活性氧增加和脂氧化都是细胞凋亡的典型特征。所以本研究为表观遗传细胞凋亡和氧化胁迫细胞凋亡的研究提供了很有价值的信息。
Resumo:
以冬小麦品种长武134(抗旱性强)和陕253(抗旱性弱)为材料,研究干旱对旗叶净光合速率和叶绿素含量、主茎及其组成节间花前积累干物质的转运及其对穗粒重贡献的影响。结果表明,干旱条件下长武134主茎穗粒重降幅小于陕253;干旱缩短了小麦花后旗叶光合速率高值持续期(PAD)和叶绿素含量缓降期(RSP),长武134受影响程度较小。长武134除穗下节外,其余各节间及茎杆干物质转运量及对籽粒贡献率降幅均大于陕253;干旱提高了陕253穗下节和倒二节干物质转运率,降低了倒三节和下部节干物质转运率,茎杆干物质转运率无明显变化;长武134除穗下节外其余各节间及茎杆干物质转运率均明显低于对照,而且距离穗部越远的节位降低幅度越大。上述结果表明,干旱条件下不同节位干物质转运能力变化与距离穗远近有关,花前茎杆干物质转运并不能补偿籽粒产量的损失,花后旗叶光合功能期延长是小麦抗旱高产的主要原因。
Resumo:
为揭示灌浆期水分亏缺对不同倍性小麦光合特性和产量的影响,选用二倍体野生一粒、栽培一粒小麦,四倍体野生二粒、栽培二粒小麦,六倍体小麦"长武134"和"陕253"等6个小麦品种作为供试材料,通过盆栽控水方式,对不同倍性小麦旗叶净光合速率、瞬时水分利用效率和产量进行了研究。结果表明,在正常供水、轻度干旱和严重干旱3种水分处理下,不同倍性小麦旗叶净光合速率、水分利用效率和产量差异极显著。在灌浆过程中,水分亏缺对不同倍性小麦净光合速率变化趋势的影响不明显。而最大净光合速率和水分利用效率随水分胁迫的加重而减小。六倍体小麦平均最大净光合速率为22.03μmol CO2.m-2.s-1),高于二倍体和四倍体小麦。六倍体小麦平均最大水分利用效率约为7.12μmol CO2/mmol H2O,分别是四倍体和二倍体的1.63倍和2.05倍,并且在灌浆开始时就达到最大。因此,小麦长期进化过程中,六倍体小麦花后较强的光合能力和较高的水分利用效率是提高小麦产量的重要生理基础。
Resumo:
研究干旱对小麦旗叶光合产物供应能力的影响,揭示小麦抗旱高产的生理机制,为提高小麦的抗旱能力及高产稳产提供理论依据。【方法】在防雨池栽培条件下,以旱地冬小麦品种长武134(抗旱性强)和水地冬小麦品种陕253(抗旱性弱)为试材,以适宜水分处理为对照(CK,土壤含水量为田间持水量的70%~75%),研究干旱处理(土壤含水量为田间持水量的50%~55%)对不同冬小麦旗叶光合产物供应速率(净光合速率和蔗糖合成能力)和供应持续期的影响。【结果】与对照相比,干旱处理降低了冬小麦灌浆中后期旗叶净光合速率,缩短了净光合速率高值持续期(PAD),其中长武134降幅较小,净光合速率较高;干旱处理提高了冬小麦灌浆初期旗叶的蔗糖磷酸合成酶(SPS)活性,其中长武134增幅较大,且在灌浆中后期依然能保持相对较高的蔗糖供应能力;干旱处理缩短了冬小麦叶绿素含量缓降期(RSP),提高了丙二醛(MDA)含量,加速了旗叶的衰老,缩短了光合产物的供应持续期,其中长武134受干旱影响较小;干旱处理降低了冬小麦灌浆中后期主茎穗粒质量积累量及其速率,其中长武134降幅较小。【结论】干旱条件下,抗旱品种长武134旗叶在灌浆中后期可维持较高的光合产物...