2 resultados para flag

em CaltechTHESIS


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Numerous studies have shown that flexible materials improve resilience and durability of a structure. Several studies have investigated the behavior of elastic plates under the influence of a free stream, such as studies of the fluttering flag and others of shape reconfiguration, due to a free stream.

The principle engineering contribution of this thesis is the design and development of a vertical axis wind turbine that features pliable blades which undergo various modes of behavior, ultimately leading to rotational propulsion of the turbine. The wind turbine design was tested in a wind tunnel and at the Caltech Laboratory for Optimized Wind Energy. Ultimately, the flexible blade vertical axis wind turbine proved to be an effective way of harnessing the power of the wind.

In addition, this body of work builds on the current knowledge of elastic cantilever plates in a free stream flow by investigating the inverted flag. While previous studies have focused on the fluid structure interaction of a free stream on elastic cantilever plates, none had studied the plate configuration where the trailing edge was clamped, leaving the leading edge free to move. Furthermore, the studies presented in this thesis establish the geometric boundaries of where the large-amplitude flapping occurs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Interactions between fluid flows and elastic bodies are ubiquitous in nature. One such phenomena that is encountered on a daily basis is the flapping and fluttering of leaves in the wind. The fluid-structure interaction that governs the physics of a leaf in the wind is poorly understood at best and has potential applications in biomechanics, vehicle design, and energy conversion. We build upon previous work on the flapping dynamics of inverted flags, which are cantilevered elastic sheets with free leading edge and fixed trailing edge that display unique large amplitude oscillatory behaviors. We model a leaf in the laboratory using modified inverted flags, experimentally probing the governing parameters behind leaf fluttering as well as shedding light on the physics behind the inverted flag phenomena. The behavior of these "inverted leaves" studied here display sensitive dependence on two biomechanically relevant parameters, stem-to-leaf rigidity and stem-to-leaf length. In addition, leaves on a tree are not often found alone. We seek to understand the complex interactions of multiple fluttering and flapping leaves by way of examining the interactions between pairs of inverted flags. Coupling through their flow fields, pairs of inverted flags exhibit striking emergent phenomena. We report these observed dynamical behaviors and the conditions upon which they arise.